

FUSE-IT: Facility Using smart Secured Energy & Information Technology

Adrien BECUE
Cassidian CyberSecurity.SAS

PROJECT AMBITION

CCS (A. Bécue)

Project goal

Project goal:

Fuse-IT will address the need of sustainable, reliable, user-friendly, efficient and secure <u>Building Management System</u> (BMS) in the context of <u>Smart Critical Sites</u>.

Context:

- -Through <u>connection</u> to enterprise network and the internet, building energy and automation systems become more flexible, powerful and upgradable.
- -They also get exposed to <u>new threats</u>, a reason why, from its original focus on information networks, cyber-security has moved towards a more comprehensive scope involving security of cyber-physical systems.

Project Objectives

The result of Fuse-IT will be a <u>Smart Secured Building System</u> involving key innovative capabilities:

- -M1-Secured shared sensors actuators & devices,
- -M2-Trusted federated energy & information networks
- -M3-Core building data processing & analysis
- -M4-Smart unified building management interfaces
- -M5-Full security Management Interfaces

A service offering will also be set up to enable <u>remote site monitoring</u> under service contract, taking advantage from big data analytics capability.

A Smart Critical Building -Overview

End-Users / Stakeholders

My budget is Too low!

My office is too cold!

My PC is too slow

Facility Manager

ICT Manager

We are under

Attack!

Don't waste my energy!

Security Manager

Technology bricks -Legacy systems

Weak points in the **Energy Chain Building management** Site system Management Network management center BMS **Facility CT Network** FMS Managment Management Weak Points in the **Security Chain HVAC** SOC EMS CCTV

> Energy Management

Security

Management

Technology bricks

FU e I -II)

- Fuse-IT enhanced system

Project Value Chain Smart Building Management WP6 M4 Smart unified Building Management M1 Secured M2 Trusted M3_Core Building Interface shared Sensors, federated Energy & data processing & analysis module Actuators & Information networks **Devices** M5_Full Security Management Interface WP7 WP5 WP4 **Smart Full-Security Management Smart** Sensors **Networks**

M1_Secured shared Sensors, Actuators & Devices

Innovations	Limitations addressed	Expected impact*	
M1 Secured shared	Flexibility limitations:	ST: support a major temporary	
Sensors, Actuators & Devices:	-Clash between security, energy	event as Fuse-IT final demonstration (2000 exhibitors, 300 000 visitors)	
- Sensor placement optimization	efficiency and flexibility requirements	MT: marketing of an innovative	
- Self* management of smart sensors	-Clash between identity control and self-* device	sensor placement optimization tool helping reducing site	
- Trusted smart	flexibility	equipment (5-10M\$)	
sensors implementing light crypto	Security limitations:	LT: implementation of light crypto for embedded wireless sensor	
	-Vulnerabilities "by design"	communication in building, aeronautics, automotive, train and ship industries (30-50M€)	

M2_Trusted federated Energy & Information Networks

Innovations	Limitations addressed	Expected impact*
M2 Trusted federated	Sustainability limitations:	ST: secured indoor wi-fi
Energy & Information networks:	-Wild-stacking of abounding information	accessible to employees of critical sites
Energy & information network federationTrusted & efficient	and control systems Security limitations:	ST: SCADA certification and labelling services for manufacturers (10-15M€)
SCADA communication protocols	-Lack of SCADA- protocol aware network infrastructure	MT: multi-B\$ savings for energy suppliers on fraud and network
-Secured wireless communication network capability - Physical / Logical	-Vulnerabilities "by design" -Architecture	recovery MT: Supply of security audit services in Smart Critical Buildings (200-500M€)
network segregation capability	weaknesses of cyber- physical networks	LT: drastic cost savings in network infrastructure & cabling (average 100-200 K€ / building)

M3_Core Building Data Processing & Analysis module

Innovations	Limitations addressed	Expected impact*
M3 Core Building data	Efficiency limitations:	ST: technological advantage
processing & analysis	- Lack of appropriate	in computational intelligence
module:	building monitoring	MT: marketing of a scalable
-Common information	indicators	universal data processing &
base & KPIs	-Effective management of	analysis module for BMS
-Cloud based holistic	physical/logical security	application (1-5B€)
knowledge base and	events	LT: application to other
advanced monitoring	Flexibility limitations:	activities demanding
layer	-Micro-monitoring of	advanced data analysis
-Correlation capability	energy at site level	capability (10-15 B€)
between logical &		
physical security		
events/incidents		

M4_Smart Unified Building Management Interface

Innovations	Limitations addressed	Expected impact*
M4_Smart unified	Efficiency limitations:	ST: 30% energy savings on
Building Management	-Deadlock in the flow-	Smart Critical Sites
Interface:	down of energy	MT: 50% savings on
-Advanced	production/consumption	management software and
management and	incentive	maintenance cost related to
optimization capability	Ergonomic limitations:	building and energy monitoring
-Smart management	-Profusion of vendor-	MT: unified building management
user-interface	specific user-interfaces:	software sales (100-300M€)
		LT: remote site management
		service operation contracts (500-
		700M€)

M5_Full-Security Management Interface

Innovations	Limitations addressed	Expected impact*
M5_Full Security	Security limitations:	MT: 30% savings on security and
Management Interface:	-Ignorance of cyber-	cybersecurity software,
-Role-based assets &	physical network	maintenance & upgrade cost
identity management	specificities	MT: multi-B\$ cost-avoidance
capability	Ergonomic limitations:	related to cyber/physical attacks
-Event/process-based	-Non-existence of full-	on critical sites
alerting capability	security supervision	MT: full-security management
-Integrated building	interfaces	software sales (100-300M€)
security incident		LT: remote full-security
management interface		management service operation
		contracts (500-700M€)

NICHE MARKET not targeted by existing Manufacturers

RELUNCTANCE from automation manufacturers to invest in related R&D

Market brakes

INVESTMENT COST related to Building Modernization

MIGRATION COST from Legacy Systems to FUSE-IT

PROPRIETARY Policy of Manufacturers

VERTICAL SILO standradization

HIGH PROFITABILITY

Market (Critical Buildings)

Use of ITEA2 Label to get **R&T COFUNDING**

GLOBAL COST relevance

SERVICE Offering

CROSS-DOMAIN Approach

&

HORIZONTAL STRANDARDIZATION

Market drivers

European Policy National law

> Rules & Regulations

Corporate Policies End-users' needs

Demand Pull

 Smart sensors netw Big data analytics

Supply Push

Attacks Resurgence New vulnerabilities

Collective **Awareness**

Business Model

Technopark

MANAGEMENT OVERVIEW

CCS (A. Bécue)

Project Schedule

KOM	Kick-Off Meeting	MO	10/2014
BMR	Business Model review	M6	04/2015
PDR	Preliminary Design Review	M12	10/2015
FDR	Final Design Review	M18	04/2016
IVQ1	Validation of Network & Sensor layers	M24	10/2016
IVQ2	Integration, Validation & Qualification	M30	04/2017
PCR	Project Closing Review	M36	10/2017

Consortium Overview

France

Cassidian CyberSecurity

Institut Mines Télécom ARC Informatique ICAM Nantes V-TREEM CEAList

SOGETI High Tech

Université La Rochelle Thales Research & Technology

Thales Systems Université de Bourgogne

Portugal

ISEP-GECAD SCHNEIDER PRT SCHMITT Elevators **EVOLEO Technology** ISQ IP-BRICK

Canada

Cityzeen

Belgium

NIKO i-Minds LIN-K

Hospital San Jao

Turkey

MOSBIT CTECH GAZI Technopark **ENEL Energy plant**

Project WBS

DEMONSTRATION PLAN

PROJECT ACHIEVEMENTS

CCS (A. Bécue)

Key technical achievements

UC1: Adaptive Energy demand response

UC2: Reaction to a cyber-physical attack

UC1-ADAPTATIVE DEMAND RESPONSE

GECAD (G. Marreiros)

Operational Challenge

- UC1 considers the Building Management System (BMS) of complex critical buildings considering the site activities – energy, facilities, ICT systems and site security
 - Intelligent energy resource management
 - Demand response will be considered internally, among installation owners in the building, and externally, in the smart grid context
- This UC will explore the possible aggregation of these installations to enable increased efficiency and lower costs
- Added topic: Building as a <u>Microgrid</u>

Technical Challenges

- Deal with intermittent resources (renewable)
- Apply devices for energy consumption/generation monitoring
- Information fusion
- Ensure data security and adequately dealing with privacy issues
- Implement forecasting methodologies to foresee energy generation, energy consumption and support resources scheduling
- Providing the required features so that the system is able to react at diverse time horizons (day-ahead, hour-ahead and real-time)
- Addressing large dimension resource management almost in real-time
- Cybersecurity needs to be appropriately applied to avoid jeopardize the safe and reliable power system operations
- Adaptive energy resources optimization while assuring critical services and locations
- Interoperability, replicability and scalability
- A new federative approach to assess impact of cyber-incidents and countermeasures on grid operation and processes

Use-case rationale

• Risks: energy blackouts:

2003: Northeast USA/Canada 2003

2003: Italy

- 2006: Germany

2015: Turkey

- <u>Regulation</u>: EU H2020 directives on Inefficient Use of Renewable Sources of Energy
- Opportunity: 2012 top countries with the highest penetration of wind:
 - Denmark (27.1%),
 - Portugal (16.8%)
 - Spain (16, 3%)
- Several wind curtailment situations: in Spain in the first four months of 2013, 850 GWh of wind were curtailed; between 28 to 31 of March, 637 GWh were curtailed!

Demand Response activity in Europe

Sub-Cases

• SC1: Resilient Dynamic Energy Resources Management and Secure Context Awareness

- Secure Generation Forecasting
- Secure Load Profiling
- Trusted and Smart Demand Response
- Trusted and Smart Dynamic Tariffs
- Trusted Billing
- Optimization Methodologies
- Secure Context Evaluation
- Machine Learning of building users' preferences according to the context
- Loads Elasticity and Dynamic Priorities

SC2: Distributed Control of Energy Resources

- Real loads monitoring and control
- Security monitoring and control
- Holonic control methodologies (based on realtime optimization)
- Early warning considering cyber-attacks
- Identification of impact on the Building
- Self-healing services

SC3: Building as a Microgrid

- Obtain aggregated (Satellite) Buildings consumption / surplus
- Forecast Market Prices
- Apply DR to (Satellite) Buildings
- Negotiations with neighbor Microgrids
- Market participation
- Switching between islanded vs grid-connected mode
- DSO interaction
- Manage several (Satellite) Buildings

SC1: Resilient Dynamic ERM and Secure Context Awareness

SC2: Distributed Control of Energy Resources

SC3: Building as a Microgrid

Microgrid 3

Microgrid 1

Microgrid 2

SC3: Building as a Microgrid

UC1-SC1-SMART LIGHTING EXPERIMENT

ICAM (L. Belhaj)

Experimentation site: Nantes Carquefou

- 500 students
- 60 teachers and researchers
- Smart lighting demonstration

Smart Lighting Experiment

Power consumption measurements => Lighting consumption the actual building

- Proposition of scenarios and solutions for the whole building load management: batteries, PV and building loads: technologies and costs,
- Available data for the actual offices building and the future one

Smart sensors

- Targets :
 - Average illuminance= 500 lx (NBN EN 12464-1)
 - Comfort
 - Energy saving
- Sensors:
 - Presence sensor

External/internal Brightness sensor

Power Meters

Office consumption regulation

• Consumption regulation

Solar cell and dedicated battery

Data Management & Analysis

- Heterogeneous Data Management
- Fine-Grained Time Data Management & Analysis
 - Raw Data retrieved every minutes from sensors
 - End-User Data/preferences computed by slices of 1 hour, 1 day, 1 month

Smart Lighting Experiment

Actual consumption (blue) & objective for the future building(green)

UC2-REACTION TO A CYBER-PHYSICAL ATTACK

THALES (A. Galimberti)

Use Case 2 – Operational Challenges

- Convergence of cyber security and physical security
 - Securing cyber-physical systems such as:
 - Industrial Control Systems (ICS)
 - Building Management Systems (BMS)
 - Control Command (C2)
 - Securing critical infrastructures against blended attacks:
 - Physical intrusion to gain access to critical ICT assets as a mean to launch a cyber-attack
 - Cyberattacks on ICT-enhanced physical protection systems to enable a physical attack

Use Case 2 – Actors and Assets

Typology of sites

- Strategic offices / Technoparks
- Highly Critical Sites / Power Plants

UC2 – Sub Case 1: Industrial Espionage

Workflow

Retrieving general information

- WHAT: Network and system protections, Badge system, Directory
- HOW: Social engineering, Phishing, Stealing physical document from individuals, Dark web support

Instances

- The attackers target specific information
- The attackers target long-term information

UC2 – Sub Case 2: Sabotage

- Workflow
- Instances
 - Aramco scenario
 - Turkey oil pipeline scenario
 - Germansteelfactoryscenario

Use Case 2 – Key features

Logical access control management

Adaptation of operational procedures

Detection and identification

SC1 SC1 SC1 SC2 SC2 SC2 **Key Features** Inst. 1 Inst. 2 Inst. 3 Inst. 1 Inst. 2 Inst. 3 **End-Point protection** Χ Χ Χ Χ Χ **Detection agent** Χ Χ Χ Χ End-to-end security Χ Χ Χ Χ Role-based access management Χ Χ Χ Χ Χ Policies Χ Χ Χ Χ Separation of power Χ Χ Χ Separation of activities Χ Χ Χ Χ Χ Χ Correlation physical security and Χ Χ Χ Χ Χ Χ logical security Χ Χ Χ Χ Physical access control management

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

UC2: GEOLOCATION EXPERIMENT

CCS (C. Ponchel)

Alert in Elancourt! Scenario 1: Network Intrusion

Alert in Elancourt! Scenario 2: Cyber-Physical Attack

UC3: BMS SUPPORTING A TEMPORARY EVENT

ARC/EISIS (B. Istasse)

UC3: BMS supporting a temporary event

Use Case 3 stands for final FUSE-IT demonstrator with international impact,

UC3: BMS supporting a temporary event

- **Focus**: smart secured and temporary equipment of a complex building for a big event.
- Objective: facilitate the deployment of systems and services for buildings that require frequent readjustments or organize events based on flexible configuration and reconfiguration of the facilities.

 Configuration

 **Configuratio
- Key operational challenges:
 - Changing operating conditions of the buildings in the context of the smart grid
 - Management of local energy sources
 - Load management in multi-agent environment
 - Heating, ventilation & Air conditionning
 - Self-reconfiguration of smart sensors
 - Self-authentication of smart sensors
 - Physical access management to restricted areas
 - Enforcement of anti-espionage policy
 - Interfaces between event organizer and booth-holder

Temporary event management: methodology

Event management

Type of Event (periodic event, independent event, ...)

Type of building (from multi buildings and large buildings to small buildings, ...)

Type of managed resources

HVAC, Lighting, Lifts, Escalators, Security, Fire, Safety, Electrical, Water, ..., ICT & sensors

Planning

Resource Ident.

- Historical data, previous event, New data (KPI, consumption, occupancy profiles, ...
- Actors prediction
- Prediction (modeling, simulation,)
 Contract & Subcontract plan

Scheduling

Design, Integration, Configuration of existing installation (i.e.: space, zone and setpoint configuration)

- Commissioning
- Control & analysis

Installation &Running

Supervision and Control

- •Management,
- Monitoring
- Abnormal operation
- Analysis

Dismantling

Supervision and Control

- Management,
- Monitoring
- Abnormal operation
- Analysis

Horizon & Time

Week(s), Month(s), Year(s)

Horizon & Time

Day(s), Week(s), Month(s), Year(s)

Horizon & Time

Days(s), Real time, Batch analysis

Horizon & Time

Days(s), Real time, Batch analysis

Actors

SC1: Booths, Boxes Deployment & Management

SC2: Access control and Facility Management

SC3: Control of Energy resources

Source: PIER - Public Interest Energy Research

UC3-SC1: BOOTHS & BOXES EXPERIMENT

SOGETI (D. Excoffier)

UC3: Booth & Boxes Experiment

A fully autonomous, secured & decentralized IoT Gateway

- Challenge: Creating the first fully autonomous, decentralized and secured gateway (for Boothes&Boxes, but not only).
- Features: Create a new generation of gateway able to:
- Be **a common building block**, able to evolve with any ecosystem of devices & datamodels (whatever the Use Case involved in).
- Offer full interoperability for all protocols and any kind of sensors, actuators, or industrial devices (e.g. energy gateway) whatever protocols used (legacy, current, future).
- Provide unification of these heterogeneous ecosystem of devices (unification of data, services...)
- Allow real time data acquisition from its ecosystem of sensors & devices
- Communicate in a fully secured decentralized way with a SCADA but also with all trusted "friends" devices (gateways, mobile devices, smart sensors,...):
 - Auto-discovery without no prior user config. of all other FUSE-IT gateways in the network.
- ∑! EUREKA
- Ensure that every discovered gateways are "friends" and have the right to communicate
- Provide a decentralized way of communication: Does not rely on remote server(s)^{6,1}

Creating IoT secure channel

Create a fully autonomous decentralized secured network

Create a fully autonomous decentralized secured network

Indoor geolocation capabilities

Global flow-diagram

- I. Auto-discovery Autonomous devices
 discovery (SSDP
 discovery & UPnP
 device metadata
 exchange)
- II. Auto-configuration Secured Key exchange protocol
 - III. Auto-adaptation –
 RetroShare secured
 decentralized peer-topeer communication
 (developed for PC, but used in
 this project in embedded system)

COMMON INFORMATION BASE & KPIS

EISIS (B. Istasse)

Common Information Base & KPIs

Common Information Base

Project options for Ontologies

KPIs: metrics and data

Energy Management

Facility Management

ICT Management

Security Management

FSGIM (Ashrae)

SACM (ITEF)

SEAS Data model (Sofia)

OneM2M

BIM model

XORCISM

ENISA

FUSE-IT Information model

JOINT DEMONSTRATION WITH SEAS PROJECT ON GAZI TECHNOPARK

ICAM (L. Belhaj)

Joint Demonstration

Gazi Technopark

Validate and assess compliance with operational needs through use-case demonstration

One of the first and largest Installation producing electricity from solar energy

→ 118 companies/810 employees

Electric Vehicle Charging Station powered by Solar

Energy.

Baskent (SEAS) Energy Distributor

Capabilities Now

- ✓ 260 kW peak PVs already connected to grid (PVs & inverters benchmark)
- ✓ Feeding the campus area from two distribution transformers as a ring topology (for islanding case- dispatching from two TRs)
- ✓ Distribution transformers are already managed by SCADA
 - ✓ 117 techno park customers: IT industry and etc.)
 ✓ Eligible customers availability

Microgrid Demonstration Center needs

- $\rightarrow \mu CHP$ and additional PVs
 - **⇒Storage units**
- →Smart protection relays
- **→Smart Meters and AMI**
 - **→Off-grid inverters**
- → Microgrid Control Center linked to the BMS

Useful for FUSE-IT Building Management System

Gazi technopark: Existing Equipment

✓ 230 kWp PVs already connected to grid
 ✓ integration of additionnal 40 kWp

Consumption: > 700kWp (peak)

- Week: production consumed locally
 - Sundays: surplus sold to the grid

=> the PV is always connected to the grid.

✓ Storage

Installation of 20 – 25 kW storage, (ABB EssPro): March / April 2016

Gazi technopark: Confirmed Equipment

✓ EVs:

- 18 EVs rented for other project
- 1 charging point already implemented in the demonstration area

✓ AMI:

- 30 smart meters from "Silver Spring Network", USA: free of charge proof of concept - for the 3 buildings of Gazi Technopark
 - 20 smart meters from Itron
- 200 old meters customized through Engie (LoRA, Sigfox...) mainly for the residential area
 - 5 power quality devices from Schneider

Gazi technopark: available data

Single customer for distribution network for Enerjisa: monthly billing

✓ Sub-billing:

- Gazi divides bill for each company according to total monthly billing
 - Gazi has sub-meter for each company

✓ PV Generation:

Gazi has data each 10 or 15 min for multiple inverters (SMA) for different arrays of different PV vendors

✓ Weather conditions measurements:

- Existing Meteorological measurement station in Gazi technopark.
- A startup company located in Gazi Teknopark, focusing on meteorological data and forecasting services.

Gazi technopark: ambition

✓ Gazi technopark islanding mode:

- Not legal (No regulation rules)
 - Can be tried for the project
- Needs additional equipment: SCADA/RTU in Gazi Teknopark
 Transformation Substation, breakers, off grid inverters etc.

SCADA/RTU data:

- motion and door alarms,
- transformer faults (temperature, oil level),
 - feeder switch positions,
 - reactive/active power,
 - voltage and current measurement etc.
- G.SHDSL (VPN solution) local telecommunication network between field and Main Control Center.

Gazi technopark: ambition

→ FUSE-IT additional components for BMS demonstration

- Access control system/cameras
 - Smart sensors
- Cyber assets: servers, network devices

→ FUSE-IT demonstration objectives (Gazi-MOSBIT contract)

- Information model by using FUSE-IT user interfaces
 - FUSE-IT KPIs by using information model
- Anomaly detection by using Cyber-Physical event correlation based on information model

QUESTIONS ? COMMENTS ?

