

SoC Security Through the Life

Cycle

Jerry Backer(1), David Hély(2) and

Ramesh Karri(1)

1

Polytechnic School of Engineering, New York University

Université Grenoble Alpes, LCIS, Valence

Agenda

 Introduction

– SoC lifecycle

– Test and Debug

– Motivations

 Focus on Debug Security

– Debug and SoC

– Debug Threats

– A secure Debug mechanism

 Leveraging Test and Debug features for System Security

– Software threats

– Test based countermeasure

– Debug based countermeasure

 Conclusions and Perspectives

2

System On Chip: The

Stakeholders

• System on Chip Architect

• Specify the system

• Components designers

• Design on purpose components

• System Integrator

• Integrates the components

• Fabrication Engineers

• Manufacture the IC

• Test the IC

• Package the IC

• Personalization Engineers

• Configure the IC to the

customers

• OS Providers

• 3rd Party SW developers

3 J. Backer, D. Hely and R. Karri

System On Chip: Test and

Debug

All need dedicated access to the system in order to:

• Test the SoC: Check Fabrication has been properly

carried out

• Debug the system (either hardware or software)

Extra Hardware is added to offer to the SoC stakeholders

extra observability/controllability of the internal system

What about Security?

4

 SoC Integration

 SoC Integration

5

Main

 CPU

8051

μCont

OTP

DMAC

AES
Mem

Cont.

SoC Integration

SoC Integration
• Test/Debug Layer: IP cores configured with internal scan chains,

wrapped for test, and connected via a test access mechanism

(TAM) bus

 SoC Integration

6

3PIP Internal

Logic

SoC Integration

SoC Integration
• Test/Debug Layer: IP cores configured with internal scan chains,

wrapped for test, and connected via a test access mechanism

(TAM) bus

 SoC Integration

7

internal scan cells

SoC Integration

 SoC Integration
• Test/Debug Layer: IP cores configured with internal scan chains,

wrapped for test, and connected via a test access mechanism (TAM) bus

 SoC Integration

8

W
B

Y

W
IR

WBR

WBR

WSO

WSI

W
S

C

SoC Integration

 SoC Integration
• Test/Debug Layer: IP cores configured with internal scan chains,

wrapped for test, and connected via a test access mechanism (TAM) bus

 SoC Integration

9

W
B

Y

W
IR

WBR

WBR

WSO

WSI

W
S

C

• Wrapper Boundary Register (WBR)

• Wrapper Serial Input (WSI)

• Wrapper Serial Output (WSO

• Wrapper Bypass Register (WBY)

• Wrapper Instruction Register (WIR)

• Wrapper Serial Control (WSC)

o selectWIR

o shiftWR

o captureWR

o updateWR

SoC Integration

 SoC Integration
• Test/Debug Layer: IP cores configured with internal scan chains,

wrapped for test, and connected via a test access mechanism (TAM) bus

 SoC Integration

10

Main CPU

WSO WSI

WSC

OTP

WSO WSI

WSC

8051 μCont

WSO WSI

WSC

Test Interface

TAM Bus

WBR WBR WBR

SoC Integration

 SoC Integration
• Functional Layer: IP cores interconnected to meet functional

specifications. Connections done via system bus, network-on-chip (NoC),

sideband and coherence interfaces

 SoC Integration

11

Main

 CPU

8051

μCont

OTP

DMAC

AES
Mem

Cont.

System bus

 Scan-based side-channel attack via test layer

• Goal: Use internal scan cells to leak assets such as encryption keys

• Case study: AES core [1][2]

1. Put SoC in normal mode

2. Use functional input ports to set AES plaintext

3. Run AES for one round

4. Switch SoC to test mode

5. Shift out round output via test output port (e.g. WSO port)

6. Analyze output*

7. Repeat until key is obtain

 * Differential analysis by tracing bit flips between plaintexts and ciphertexts

12

 Scan-based Side Channel Attack

Test Layer Attack

Motivations

 Securing Test and Debug Mecanisms:

– How to keep high observability and controllability for

test and debug while guaranteeing a high level of

security for the SoC assets?

 Leveraging Test and Debug hardware for

mission mode security:

– How to reuse the unused test and debug hardware

in mission mode to provide new security services?

13

Agenda

 Introduction

– SoC lifecycle

– Test and Debug

– Motivations

 Focus on Debug Security

– Debug and SoC

– Debug Threats

– A secure Debug mechanism

 Leveraging Debug features for System Security

– Software threats

– Test based countermeasure

– Debug based countermeasure

 Conclusions and Perspectives

14

Who uses the SoC DfD infrastructure?

Debug Instrumentation of

Systems-on-Chip

15

Debug Instrumentation of

Systems-on-Chip

μP μP

DSP

System Fabric

L
C

D

SF

SF SF
SF

SF

Debug Bus

Trace Bus

SF

J
T
A

G

• SoC DfD infrastructure
o Signal filter (SF)

o Trace bus

o Debug bus

o Joint test Access Group (JTAG)

WiFi

16

• SoC integrator/debugger

• Original equipment manufacturer (OEM)

• Outsourced Semiconductor test and assembly

(OSAT)

Post-silicon

validation

Debug Instrumentation of

Systems-on-Chip

Who uses the SoC DfD infrastructure?

17

Post-silicon

validation

• SoC integrator

• OEM

• O.S. vendor

• 3rd party software

developer

In-field

Debug Instrumentation of

Systems-on-Chip

Who uses the SoC DfD infrastructure?

18

Post-silicon

validation

• SoC

integrator

• OEM

In-field retirement

Debug Instrumentation of

Systems-on-Chip

Who uses the SoC DfD infrastructure?

19

Post-silicon

validation

• SoC

integrator

• OEM

In-field retirement

• SoC integrator

• OEM

• OS vendor

• 3rd party software

developer

• SoC

integrator/debug

ger

• OEM

• OSAT

Security implication: rogue debugger can use DfD to illegally leak SoC assets

Who uses the SoC DfD infrastructure?

Debug Instrumentation of

Systems-on-Chip

20

Threat Model

SoC Assets and Asset Owners

• Cryptographic keys

• Unique ID

• Configuration/calibration data

• Premium content

• Proprietary firmware

SoC Assets

21

SoC Assets and Asset Owners

• Cryptographic keys

• Unique ID

• Configuration/calibration data

• Premium content

• Proprietary firmware

SoC Assets

• IP vendors

• SoC integrator

• OEM

• O.S. vendor

• 3rd party software vendors

Asset Owners

Threat Model

22

SoC Assets and Asset Owners

• Cryptographic keys

• Unique ID

• Configuration/calibration data

• Premium content

• Proprietary firmware

SoC Assets

• IP vendors

• SoC integrator

• OEM

• O.S. vendor

• 3rd party software vendors

Asset Owners

Threat Model

• SoC security requirement: specific assets are confidential to asset owners

• DfD traces expose assets to all debuggers

• Rogue debuggers leverage traces to leak SoC assets

23

SoC

tra
c

e
-b

a
s

e
d

 d
e
b

u
g

010111011001…

100100100110…

0110110110110…

1110110100100…

d
e

c
o

m
p

re
s

s

MOV r0, #10

MOV r1, #3

ADD r0, r0, r1

E
x

tra
c

t a
s

s
e

t

MOV r0, #10

MOV r1, #3

ADD r0, r0, r1

compressed traces
disassembly firmware

Objective: Leak confidential SoC assets such as cryptographic

keys and proprietary firmware

Threat Model

24

SoC

tra
c

e
-b

a
s

e
d

 d
e
b

u
g

010111011001…

100100100110…

0110110110110…

1110110100100…

d
e

c
o

m
p

re
s

s

MOV r0, #10

MOV r1, #3

ADD r0, r0, r1

E
x

tra
c

t a
s

s
e

t

MOV r0, #10

MOV r1, #3

ADD r0, r0, r1

compressed traces
disassembly firmware

• Objective: Leak confidential SoC assets such as cryptographic keys

and proprietary firmware

• Assumptions

1. Only SoC integrator is trusted

2. Rogue debugger has insider knowledge of SoC design

Threat Model

25

SoC

tra
c

e
-b

a
s

e
d

 d
e
b

u
g

010111011001…

100100100110…

0110110110110…

1110110100100…

d
e

c
o

m
p

re
s

s

MOV r0, #10

MOV r1, #3

ADD r0, r0, r1

E
x

tra
c

t a
s

s
e

t

MOV r0, #10

MOV r1, #3

ADD r0, r0, r1

compressed traces
disassembly firmware

• Objective: Leak confidential SoC assets such as cryptographic keys

and proprietary firmware

• Assumptions

1. Only SoC integrator is trusted

2. Rogue debugger has insider knowledge of SoC design

3. No collusion among rogue debuggers

• Attack:

o Configure DfD for trace-base debugging

o Decompress debug traces to reconstruct firmware/execution

flow

o Extract asset from decompressed traces

Threat Model

26

• Permanent JTAG Lock

• JTAG authentication

• Trace encryption

• Restricted memory segments

J
T
A

G

J
T
A

G

Encrypt(Trace, Key)

Existing Security Mechanisms

0x00000000 – 0x000FFF : restricted

0xFFFFE100 – 0xFFFFE4FF : restricted

27

• Requirements

1. Enforce confidentiality policy of SoC assets

2. Maintain debug observability

3. Limit area, power costs

1. Have no impact on debugging time

2. Have no impact on SoC horizontal design flow and supply

chain

Proposed Secure DfD

Infrastructure

28

• Secure asset tagging
o Tag size = # debuggers

• Debugger authentication

o Debugger ID = tag size

o No confidentiality requirement for debugger ID

• Asset filtering

Secure asset tagging

0001

0100

1000 J
T
A

G

debugger

ID

Debugger authentication

0001

=

0x0000

…

DfD funnel

Asset filtering

debugger

ID

Proposed Secure DfD

Infrastructure

29

• Secure Asset Tagging

o Tag = confidentiality access policy for each asset

o Asset owner sets tag of each asset

o Read-only LUT added to DfD infrastructure to store confidentiality of

assets

Asset owner

0001 0xFFF00000 – 0xFFF00003

0001 0x0000FF00 – 0x000102FF

0001 0x00000000 – 0x000FFFFF

Asset address Tag

D
fD

 L
U

T

Proposed Secure DfD

Infrastructure

30

• Debugger Authentication
o Each SoC has

• Several challenge-response pairs (CRPs)

• Unique SoC key K

o Each debugger must

• Register with debug server

• Provide <usr, pswd> combination during registration

o The SoC integrator

• Secures the debug server

• Stores the CRPs and K of each SoC in server

• Stores debugger tag ID in debug server

• Provides interface for debugger to securely login to debug

server

• Adds JTAG authentication module to DfD infrastructure

JTAG

authentication

Proposed Secure DfD

Infrastructure

31

• Debugger Authentication

Proposed Secure DfD

Infrastructure

Ci
Secure

Debug

Server

UNLOCK

JTAG

JTAG IR

JTAG

authentication
1

Send UNLOCK request Generate(Ci, Ri)

Retrieve SoC key K

Send Ci

JTAG authentication Debugger Debug server

Send <usr,pswd>, Ci

Validate login

Get debugger Tag ID

Search for (Ci, R’i)

Search for SoC key K

Send R’I||ID||H(R’i||ID, K)
Verify H(R’i||ID,K)

if HD(Ri, R’i)≤t , UNLOCK = 1 Initiate debug

R’i||ID||

H(R’i||ID,K)

ID

32

• Asset Filtering
o Asset Filtering Module (AFM)

• Monitor values of data signals to trace

• Verify access policy of authenticated debugger for each value of

data signal

Proposed Secure DfD

Infrastructure

T
ra

c
e
 B

u
s

S
ig

n
a
l

F
ilt

e
r

address

data

signal 1

signal 2

33

• Asset Filtering
o Asset Filtering Module (AFM)

Proposed Secure DfD

Infrastructure

T
ra

c
e
 B

u
s

S
ig

n
a

l

F
ilt

e
r

address data

signal 1

signal 2

D
fD

 L
U

T

0xFFF00000

0x000…

0001 0xFFF00000 – 0xFFF00003

0001 0x0000FF00 – 0x000102FF

0001 0x00000000 – 0x000FFFFF

34

• Asset Filtering
o Asset Filtering Module (AFM)

Proposed Secure DfD

Infrastructure

T
ra

c
e
 B

u
s

S
ig

n
a

l

F
ilt

e
r

address data

signal 1

signal 2

D
fD

 L
U

T

0xFFF00000

0x000…

0001 0xFFF00000 – 0xFFF00003

0001 0x0000FF00 – 0x000102FF

0001 0x00000000 – 0x000FFFFF

0001

= ID

35

Proposed Secure DfD

Infrastructure

• Debugger Authentication Implementation
o Physical Unclonable Function for CRPs

o Index-Based Syndrome (IBS) [1] for SoC K
o IBS Encode of K[i]

o IBS Decode of S[i]

PUF
Ci Ri

PUF
[C1…Cq] [R1…Rq]

IBS-Encode
Si

[1] M.-D. Yu et.al., “Secure and Robust Error Correction for Physical Unclonable Functions”, IEEE Design & Test of Computers, vol. 27, pp 48-65,

Jan. 2010

N
V

M

[C1…Cq]
PUF

[R’1…R’q]

IBS-Encode
Si K’[i]

36

Proposed Secure DfD

Infrastructure

• Debugger Authentication Implementation

P
R

N
G

=

IBS PUF
SHA-

1HMA

C

NVM

HD

Ci Ci

Ri

0

UNLOCK

R’i

K
R0…

ID

ID

H
(R
’i ||ID

,K
)

• Pseudo-random number generator

(PRNG)

• Arbiter PUF

• IBS Decode [C
1
…

C
q]

37

Proposed Secure DfD

Infrastructure

• Area and Power Costs

o 6% area and power overheads compared to ARM9 processor [2].

Component Area (μm2) Power (μW)

DfD LUT 24,939.5 20,108.6

Authentication Module

PRNG 853.7 1,051.8

PUF 22,335 21,110.8

NVM 2,493.4 2,467.6

IBS-Decoder 49.2 38.1

SHA1-HMAC 18,115 18,933.8

Asset Filtering Module 356.7 427.6

[2] S. Segars, “The ARM9 Family-High Performance Microprocessors for Embedded Applications”, IEEE ICCD, Oct. 1998, pp 230-235.

38

• We propose a secure DfD infrastructure that
o Maintains confidentiality of assets during trace-based debugging

o Does not impact SoC horizontal design methodology

o Incurs small area and performance costs

• Continuing work:
o Increase flexibility of secure DfD

o Reduce/minimize storage requirements of debug server

o Runtime tracking of assets

Secure DfD-Conclusions

39

Agenda

 Introduction

– SoC lifecycle

– Test and Debug

– Motivations

 Focus on Debug Security

– Debug and SoC

– Debug Threats

– A secure Debug mechanism

 Leveraging Debug features for System Security

– Software threats

– Test based countermeasure

– Debug based countermeasure

 Conclusions and Perspectives

40

Software Security Threats

Memory Extraction

USB
read(0xFFFFF000)

secret key 0xFFFFF000

secret key secret key

o Objective: Leak sensitive data (e.g. cryptographic key, firmware) from

SoC

o Approach: Leverage external peripherals to access sensitive data in

memory

41

Software Security Threats

Memory Hijacking

USB BAD BAR* 0xFFFFFF00

SoC Memory

write(0xFFFFFF00,

BAD BAR)

o Objective: Modify SoC operating state

 Change configuration settings

 Modify privileges, debug state, etc

o Approach: Leverage external peripherals to modify configuration registers

*BAR: Base Address Register – Used to configure address mapping of system
42

Software Security Threats

Code Injection

void vulnerable(char

*array)

{

 char buf[8];

 strcpy(buf, array);

}

Program stack

local variables

of

vulnerable

return address

parameters

of

vulnerable

Software code

o Objective: Execute arbitrary (malicious) code on system

o Approach: Leverage software vulnerability to inject code

43

Software Security Threats

Code Injection

void vulnerable(char

*array)

{

 char buf[8];

 strcpy(buf, array);

}

Software code

o Objective: Execute arbitrary (malicious) code on system

o Approach: Leverage software vulnerability to inject code

Program stack

Malicious code

injected

onto stack

0x80044F04

parameters

of

vulnerable

0xAEEFFE04DC31BA

0x80044F04

44

• Countermeasures against extraction and hijacking

• Memory management unit (MMU)

• Memory protection unit (MPU)

• Countermeasures against code injection and reuse

• Executable space protection (NX-bit)

• Address space layout randomization (ASLR)

• Control flow integrity (CFI) checking

Motivation Existing

countermeasures

45

• Countermeasures against extraction and hijacking

• Memory management unit (MMU)Significant area cost

• Memory protection unit (MPU)62% area cost on typical USB IP

• Countermeasures against code injection and reuse

• Executable space protection (NX-bit)Vulnerable to code reuse

• Address space layout randomization (ASLR)Vulnerable to JIT

• Control flow integrity (CFI) checking Changes to 3rd party IP

• Countermeasures incur significant area and performance costs

• NX-bit does not protect against code reuse attacks

• ASLR is vulnerable to memory leaks and Just-in-Time (JIT) code reuse

• CFI requires changes to internal logic of IP cores (i.e. new instructions)

Motivation drawback of countermeasures

46

• Countermeasures against extraction and hijacking

• Memory management unit (MMU)Monitor memory transfers

• Memory protection unit (MPU)Monitor memory transfers

• Countermeasures need to observe innerworkings of software

execution in real time to detect attacks

• Countermeasures against code injection and reuse

• Executable space protection (NX-bit)

• Address space layout randomization (ASLR)

• Control flow integrity (CFI) checking Monitor execution flow

Motivation requirements of

countermeasures

47

Can we come up with an approach to observe software

execution in real-time without the limitations of existing

countermeasures?

Motivation

• Leverage observability provided by SoC debug

architecture to monitor software execution for

security threats

48

• Need for runtime software observability for software

security
o Monitor memory transfers to thwart memory hijacking and

extraction

o Monitor software control flow to detect code injection and reuse

• SoC debug instrumentation to enable real-time

observability
o Requires changes to internal logic of 3rd party IP cores

o Incurs significant hardware and power costs

o Delays SoC time-to-market

Reuse SoC debug instruments to detect software attacks

Motivation

49

• SoC debug architecture readily available for runtime observability

System Fabric

WiFi

DI

DI

DI

DI

SF

SF

SF

SF SF

DI

Trace Bus

Debug Bus

J
T
A

G

• Real-time tracing
o Debug instrument (DI)

o Signal filter (SF)

o Trace bus

o Debug bus

o JTAG port

Reuse SoC tracing instruments to detect software attacks

UART

U
S

B
 CPU0

Motivation

50

• Signals to trace depend on IP core type:

• Processor core: program counters, instructions executed,

memory operands, process ID, pipeline statuses,

addresses of executed basic blocks, etc

• System fabric: data and address of memory transfers,

control signals of said transfers, etc.

Motivation

51

• Enhance debug architecture with Security Monitoring Module (SMM)

• SMM taps IP monitored signals to detect security threats

• Add SMM to trace-based architecture of relevant IP cores such as

system fabric and processor cores

• SMM allows integration of security features within SoC design

Motivation

52

SMM for System Fabric IP

Proposed Approach

53

SMM for System Processor IP

Proposed Approach

1. Obtain basic block static control flow graph (CFG) of software code

54

SMM for System Processor IP

Proposed Approach

1. Obtain basic block static control flow graph (CFG) of software code

2. Build signature table of golden software execution flow

3. Encrypt signature table and add it to software binary

55

SMM for System Processor IP

Proposed Approach

1. Obtain basic block static control flow graph (CFG) of software code

2. Build signature table of golden software execution flow

3. Encrypt signature table and add it to software binary

BB address

C
P

U

C
o

re

Process ID

process ID

buffer =
≠

Signature

cache

Signature

generator

H

≠

v
io

la
ti

o
n

reserved v

to RAM

Gsig

Rsig

56

Implementation of System Fabric SMM

• Simulate 64-bit Atom processor

• Evaluate on SPEC CPU 2006 and MiBench workloads

• Simulate several iterations of signature cache to optimize hit rate,

access latency, and area overhead

Proposed Approach

57

 We enhance the trace-based debug

architecture that
o Detects common software attacks in embedded systems

o Requires no changes to IP cores

o Incurs small and power costs

 Continuing work:
o Evaluate performance overhead of proposed mechanism

o Explore how other debugging features can be leveraged to detect

other types of attacks

o Design SMMs to prevent, not just detect

o Design SMM as a configurable security plug-in IP

Results and on going actions

58

Agenda

 Introduction

– SoC lifecycle

– Test and Debug

– Motivations

 Focus on Debug Security

– Debug and SoC

– Debug Threats

– A secure Debug mechanism

 Leveraging Test and Debug features for System Security

– Software threats

– Test based countermeasure

– Debug based countermeasure

 Conclusions and Perspectives

59

Conclusions

 Test and Debug Features require dedicated

security mechanisms whith:

– Low overhead

– Standard access

– Easy deployment for all stake holders

 They also provide good mission mode

security opportunities

– Low overhead

– Easy integration

60

Perspectives and On going

Actions

 Test and debug based attacks are carried out

on real SoC in order to demonstrate the

vulnerabilities and to enhance the proposed

secure implementation

 New Test and debug based security

mechanisms are being developed and

evaluated using dedicated SoC and

benchmarks

61

