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Desirable Properties of E-cash

o Off-line: bank not present at the time of payment

@ Traceability of double spenders:
each time a user spends a coin more than once he will be detected

@ Anonymity: if a user does not spend a coin twice, she remains anonymous
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Desirable Properties of E-cash

o Off-line: bank not present at the time of payment

Traceability of double spenders:
each time a user spends a coin more than once he will be detected

@ Anonymity: if a user does not spend a coin twice, she remains anonymous

o Fairness: perfect anonymity enables perfect crimes
~» an authority can trace coins that were acquired illegally.

Transferability: received e-cash can be spend without involving the bank

e fundamental property of regular cash
o Chaum and Pederson (1992) ~~ impossible without increasing the coin size
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The Concept of Transferable E-cash

Alice Bob Shop
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Zero-Knowledge Proof Systems

o Goldwasser, Micali and Rackoff introduced interactive zero-knowledge
proofs in 1985

o the paper was rejected a couple of times
o ...then they won the Godel award for it
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Zero-Knowledge Proof Systems

o Goldwasser, Micali and Rackoff introduced interactive zero-knowledge
proofs in 1985

o the paper was rejected a couple of times
o ...then they won the Godel award for it

~ proofs that reveal nothing other than the validity of assertion being proven

@ Central tool in study of cryptographic protocols

e Anonymous credentials
o Online voting
o ...
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Zero-knowledge Interactive Proof

Alice Bob

@ interactive method for one party to prove to another that a statement S is
true, without revealing anything other than the veracity of S.
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Zero-knowledge Interactive Proof

Alice Bob

@ interactive method for one party to prove to another that a statement S is
true, without revealing anything other than the veracity of S.
@ Completeness: S is true ~~ verifier will be convinced of this fact

@ Soundness: S is false ~ no cheating prover can convince the verifier that S
is true

© Zero-knowledge: S is true ~~ no cheating verifier learns anything other than
this fact. (weaker version: Witness indistinguishability)
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Non-interactive Zero-knowledge Proof

>

Alice Bob

@ non-interactive method for one party to prove to another that a statement S
is true, without revealing anything other than the veracity of S.

@ Completeness: S is true ~~ verifier will be convinced of this fact

@ Soundness: S is false ~ no cheating prover can convince the verifier that S
is true

© Zero-knowledge: S is true ~~ no cheating verifier learns anything other than
this fact. (weaker version: Witness indistinguishability)
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History of NIZK Proofs

Inefficient NIZK
@ Blum-Feldman-Micali, 1988.

Damgard, 1992.
Killian-Petrank, 1998.
Feige-Lapidot-Shamir, 1999.

De Santis-Di Crescenzo-Persiano, 2002.
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Applications of NIZK Proofs

Fancy signature schemes

e group signatures
e ring signatures
o ...

o Efficient non-interactive proof of correctness of shuffle
@ Non-interactive anonymous credentials

@ CCA-2-secure encryption schemes

o Identification

@ E-cash
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Composite order bilinear structure: What 7

(e,G,Gr, g, n) bilinear structure:

o G, Gt multiplicative groups of order n = pq
e n = RSA integer

° (g)=G

0e:GxG—-Gr
° (e(gg)=GCr
o e(g®,g") =e(g,8)" a,beZ
deciding group membership,

@ group operations, efficiently computable.
bilinear map
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Composite order bilinear structure: How 7

@ Groups are instantiated using supersingular elliptic curves E over finite fields
F¢, £ mod —1(modn) prime.

@ Groups are very large: N > 22048 to prevent factoring attack.

@ Pairings are slow:

usual pairing-based crypto | G C E(F;) ~ 256 bits
(prime-order curve) Gt C Fjs ~ 2048 bits
3 ms pairing
composite-order groups | G C E(F,) ~ 2048 bits
(supersingular curve) Gt C F}, ~ 4096 bits
150 ms pairing

Conclusion: composite-order elliptic curves negates many advantages of ECC
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Composite order bilinear structure: Why 7

@ Deciding Diffie-Hellman tuples: given (g,g?, g°, g°) € G*

c=ab < e(g? g’ =e(g, &%)
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Q@ Ifhi=1: forallve G
e(h,v)7=1
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Composite order bilinear structure: Why 7

@ Deciding Diffie-Hellman tuples: given (g,g?, g°, g°) € G*

c=ab < e(g?,g") =e(g,g°)

Q@ Ifhi=1: forallve G
e(h,v)7=1

e(g’h®, g)? = e(g,g)°

Applications: “Somewhat homomorphic” encryption, Traitor tracing, Ring and
group signatures, Attribute-based encryption, Fully secure HIBE, ...
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Boneh-Goh-Nissim Encryption Scheme

Public key: (e, G, G, n) bilinear structure with n = pg
g, h € G with ord(h) = q.

Secret key: p,q
Encryption: ¢ = g™h" (r Ll Zy)
Decryption: c? = (g™h")? = gmh? = (g?)™ (+ discrete log)

IND-CPA-secure under the:

Subgroup Membership Assumption
Hard to distinguish h € G of order g from random h of order n
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Boneh-Goh-Nissim Commitment Scheme

Public key: (e, G, G, n) bilinear structure with n = pg
g, h € G with ord(h) = q.

Commitment: ¢ =g™h" (r s Zy)

Perfectly binding: unique m mod p

Computationally hiding: indistinguishable from h of order n
Addition: (g?h") - (gbh®) = g?tPh+s

Multiplication:

e(gahr7gbhs) _

(g7,8")e(h", g")e(g?, h)e(h", h)

e
e(g7 g)abe(h7 gas+rbhrs)
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Groth-Ostrovsky-Sahai: NIZK Proof for Circuit SAT
@ Groth, Ostrovsky and Sahai (2006)

o Perfect completeness, perfect soundness, computational zero-knowledge for NP
e Common reference string: O(k) bits
e Proof: O(|Clk) bits

o Circuit-SAT is NP-complete

wq Wy
w2

w3

@ ldea:

o Commit w; using BGN encryption
o Prove the validity using homomorphic properties
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NIZK Proof for Circuit SAT

gW1 hn — a = gWAhm
gWZhrz — C2

1
gW3 hr3 — C3 g

@ Prove w; € {0,1} for i € {1,2,3,4}
@ Prove wy = —(wy A wy)

e Prove 1 = —(w3 A wa)
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Proof for ¢ Containing 0 or 1

e wmodp e {0,1} < w(w—1)=0modp
@ For c = g"h" we have
e(c,cg™) = e(g"h,g"  h")
— e(gw,gw—l)e(hr,gw—l)e(gw’ hr)e(hr’ hr)
_ e(g,g)W(W_l)e(h, (g2w—1hr)r)
——

= g?"~1h" = proof that ¢ contains 0 or 1 modp.
(c detemines w uniquely modp since ord(h) = q)
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Proof for ¢ Containing 0 or 1

e wmodp e {0,1} < w(w—1)=0modp
@ For c = g"h" we have
e(c.cg™) = e(g"h,g""h")

_ e(gw,gw—l)e(hr,gw—l)e(gw’ hr)e(hr’ hr)
— e(g,g)W(W_l)e(h, (g2w—1hr)r)
——

o 7 =g ~Ih" = proof that c contains 0 or 1 modp.
(c detemines w uniquely modp since ord(h) = q)

o Randomizable proof !
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A Simple Observation

bo | by | by | b+ by +2by — 2
0010 -2
0|01 0
0]1/0 -1
0|11 1
1,010 -1
17010 -1
1101 1
1110 0

1 1 1 2
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A Simple Observation

bo | by | by | bo+ by +2by, — 2
0010 -2
0|01 0
0]1/0 -1
0|11 1
1,010 -1
17010 -1
11011 1
11110 0

1 1 1 2

b2:ﬁ(b0/\b1) <~ b0+b1+2b2—2€{0,1}
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Proof for NAND-gate

— Wy [
g"ht = ¢ c=g"h
gW2 hrz — C2
1
gW3 hr3 — C3 g
@ Given ¢, ¢ and ¢z commitments for bits wy, wo, wy
~ Wish to prove wy = —(wy A wp).
ie. wp+wy 42wy —2 € {0,1}
o We have
2 _—2 Wo 1 Wi R Wy a2 . —2
accg © = (g™h°)-(g"h")-(g™h")g
gWo+W1+ZW4—2hro+r1+2r4
@ Prove that 61C2cfg*2 contains 0 or 1
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NIZK Proof for Circuit SAT

gw1 hh = a Cp = gWAth
gWQ hrz — C2

1
gW3 hr3 — C3 g

e Prove w; € {0,1} for i € {1,2,3,4} — 2k bits
Prove wy = —(wy A wp) — k bits
Prove 1 = —(w3 A wy) — k bits

o CRS size: 3k bits
Proof size: (2|W|+ |C|)k bits
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Groth-Ostrowsky-Sahai is ZK
Subgroup Membership Assumption

Hard to distinguish h € G of order g from random h of order n
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Groth-Ostrowsky-Sahai is ZK

Subgroup Membership Assumption
Hard to distinguish h € G of order g from random h of order n

Simulation
@ simulated CRS

| h of order n by choosing g = h”

@ the simulation trapdoor is 7

o ~ perfectly hiding trapdoor commitments

D. Vergnaud (ENS) Cryptographic Primitives for Digital Confidence Apr. 3rd 2014, Clermont-Ferrand

22/ 44



Groth-Ostrowsky-Sahai is ZK

Subgroup Membership Assumption
Hard to distinguish h € G of order g from random h of order n

Simulation

@ simulated CRS

| h of order n by choosing g = h”

@ the simulation trapdoor is 7

o ~ perfectly hiding trapdoor commitments

glhrl =q G = glhr4
glhr‘2 — C2

1
glhr3 =c3 g
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Groth-Ostrowsky-Sahai is ZK

Witness-indistinguishable 0/1-proof
@ c =gl
o 11 = (gh™)" is the proof that ¢; contains 1
0 ¢ = glhr1 — gOghr1 — gOhT+r1
o mo = (g7 h™™)™ ™ is the proof that ¢; contains 0

o = (g71h7+r1 )‘r+r1 _ (gflhr)‘r+r1(hr1)r1+‘r _ (hr1+‘r)r1 _ (glhrl)rl =m

Witness-indistinguishable NAND-proof
o We have

(g'h™)- (g'h") - (g'h™)’g 2
g2 hfo+r1+2r4

2 -2
18

gl h7-+r1+rz+2r4

Computational ZK — Subgroup membership assumption
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Groth-Ostrovsky-Sahai: Summary

@ Perfect completeness and soundness, computational zero-knowledge for NP

@ ldea:

o Commit bits using BGN encryption
o Prove the validity using homomorphic properties

Plug the commitments € in the equations and provide additionnal group
element & to check the validity

e(g”,g"g ) =1~ e(c,cg” ') =e(h,m)

@ Common reference string: O(k) bits
e Proof: O(|Clk) bits
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Groth-08troVSKY-Sahai: Summary

witness-indistinguishability

o Perfect completeness and soundness, ZOMGIAHGNA 2evd/knaiedas for NP/

algebraic
languages

o Idea: g5 p elements

o Commit Bjtg using BGN encryption

o Prove the validity using homomorphic properties

Plug the commitments € in the equations and provide additionnal group
element & to check the validity

e(g”,g"g ) =1~ e(c,cg” ') =e(h,m)

e Common reference string: O(k) bits

o Proof: )ZIK) bits
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Asymmetric bilinear structure

(e,G1,G2,Gr, g1, &, p) bilinear structure:

o Gy, G, Gt multiplicative groups of order p
e p = prime integer

° (gi)=G;

0 e:G1 xGy— Gt
o (e(g1,82)) = Gr
o e(gi,g7) =e(g1,8)" a,beL
deciding group membership,

@ group operations, efficiently computable.
bilinear map
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ElGamal Encryption Scheme

Public key: (e, G1,G2,Gr,g1,82,P)
g ui=g€G

Secret key: x
Encryption: (c1, ;) = (g7, mu,f”ﬁ) (o, B £ Zp)
Decryption: ¢;/(cf =m

IND-CPA-secure under the:

Decision Diffie-Hellman Assumption in G;
given (gj, hi, ), Hard to distinguish A% from random
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Double ElIGamal Commitment Scheme

Commitment key: (e, G1,G2,Gr, 81,82, p)
u€ Gixz,
veGy?

: : . — (o B a B
Commitment in G,: (c1, c2) = (uf'yuy 3, muf'yus )

o Perfectly binding: if u= (111 =g, =g" w1 =g" thy =g"")
o Perfectly hiding: if u= (1 =g,t12=g8" 1 =g" o= ghv+1)

e Homomorphic: (c1, ) - (¢, c}) = (u§§a'u§§ﬁ'7 (mm’)uf‘ja,ug;ﬁ/)

Keys are indistinguishable under DDH Assumption in G; and G, ~» SXDH
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Groth-Sahai Proof System
Groth-Sahai Proof System

e Pairing product equation (PPE): for variables X3,..., X, € Gy,
yl,...,ym E(Gz

He X, Ai He(BJ,y, HHe X, V) = tr

i=1j=1

determined by A; € Gy, Bj € Gy, vij € Zp and t1 € G7.

@ Groth-Sahai ~~» WI proofs that elements in G that were committed to satisfy

PPE
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Groth-Sahai Proof System
Groth-Sahai Proof System

e Pairing product equation (PPE): for variables A3,..., X, € Gy,
yl,...,ym EGz

(E): He(X,',A,-)He(Bj,yj)HHe(thj)w,j —tr
i=1 Jj=1 i=1 j=1
determined by A; € Gy, Bj € Gy, vij € Zp and t1 € G7.

@ Groth-Sahai ~~» WI proofs that elements in G that were committed to satisfy

PPE
Assumption SXDH SD
Variables € G 2 1
PPE (4,4) 1
(Linear) 2 1
Verification 5m+3n+16P | n+1P
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Groth-Sahai Proof System
Groth-Sahai Proof System

e Pairing product equation (PPE): for variables A3,..., X, € Gy,
yl,...,ym EGz

(E): He(X,',A,-)He(Bj,yj)HHe(thj)w,j —tr
i=1 Jj=1 i=1 j=1
determined by A; € Gy, Bj € Gy, vij € Zp and t1 € G7.

@ Groth-Sahai ~~» WI proofs that elements in G that were committed to satisfy

PPE
Assumption SXDH SD 0. Blazy, G. Fuchsbauer,
Variables € G 2 1 M. lzabachéne, A.
PPE (4.4) 1 Jambert, H. Sibert, D. V.
(Linear) 2 1 Batch Groth-Sahai.
Verification m+2n+8P | n+1P ACNS 2010
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Groth-Sahai Proof System: NIWI

n m n m
(E): [T e A) [T e(Br ) T[T e )7 = e
i=1 j=1 i=1j=1
Setup on input the bilinear group ~» output a commitment key ck
Com on input ck, X € G, randomness p ~~ output commitment cx to X

Prove on input ck, (X;, pi)i=1,...n» and (E) ~ output a proof ¢

.....

Verify on input ck, cx;, (E) and ¢ ~> output 0 or 1
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Groth-Sahai Proof System: NIWI

m

n n m
(E): [T e, A [T eBr ) TT I eXi ) = tr
i=1 j=1 i=1j=1
Setup on input the bilinear group ~~ output a commitment key ck
Com on input ck, X € G, randomness p ~» output commitment cx to X

Prove on input ck, (Xi, pi)i=1...n and (E) ~> output a proof ¢

.....

Verify on input ck, cx., (E) and ¢ ~» output 0 or 1

Properties:

@ correctness: honestly generated proofs are accepted by Verify

@ soundness: perfectly binding key
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Groth-Sahai Proof System: NIWI

m

(E): [Texi, A) [T eBr. V) [T T exi ) = tr
P

j=1 i=1j=1
Setup on input the bilinear group ~~ output a commitment key ck
Com on input ck, X € G, randomness p ~» output commitment cx to X

Prove on input ck, (Xi, pi)i=1...n and (E) ~> output a proof ¢

.....

Verify on input ck, cx., (E) and ¢ ~» output 0 or 1

Properties:

@ correctness: honestly generated proofs are accepted by Verify
@ soundness: perfectly binding key

@ witness-indistinguishability: perfectly hiding key
Remark: such equations are not known to always have NIZK proofs
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© Application: Transferable E-Cash
@ Design principle
o Partially-Blind Certification
@ Transferable Anonymous Constant-Size Fair E-Cash from Certificates
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Transferable Fair E-cash: Cast of characters

Bob

Users: withdraw, transfer or spend coins
(registered to a system manager S)
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Transferable Fair E-cash: Cast of characters

Bob Shop

Shop: to which coins are spent
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Transferable Fair E-cash: Cast of characters

Bob Shop

Bank

Bank B: issue coins
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Transferable Fair E-cash: Cast of characters

Bob Shop

Bank Double-spending detector

Double-spending detector D: check (on deposit) if a coin has already been spent
(coins can be easily duplicated ~~ copies of cash should not be spendable.)
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Transferable Fair E-cash: Cast of characters

Shop

Bank Double-spending detector Tracer

Tracer T trace coins, revoke anonymity and identify double-spenders.
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Transferable E-cash: Our Construction

@ in our scheme, coins are transferable while remaining constant in size

@ we circumvent the impossibility with a new method to trace double spenders:

o users keep receipts when receiving coins
(instead of storing all information about transfers inside the coin)

@ anonymous w.r.t. an entity issuing coins and able to detect double spendings.

@ the construction: our new primitive + the Groth-Sahai proof system

G. Fuchsbauer, D. Pointcheval, D. V.
Transferable Constant-Size Fair E-Cash.
CANS 2009
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A New Primitive: Partially-Blind Certification

= 4-tuple of (interactive) PPTs:
o Setup: k ~ (pk, sk)

@ Sign and User are interactive PPTs s.t.:
e User: pk ~» (o,7) or L
o Sign: sk ~» completed or not-completed

(certificate issuing protocol)

o Verif: (pk,(o,7)) ~ accept or reject.
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A New Primitive: Partially-Blind Certification

= 4-tuple of (interactive) PPTs:
o Setup: k ~ (pk, sk)
@ Sign and User are interactive PPTs s.t.:
e User: pk ~» (o,7) or L
o Sign: sk ~» completed or not-completed
(certificate issuing protocol)

o Verif: (pk,(o,7)) ~ accept or reject.
Q (o0, 7) = certificate for pk

@ 7 = blind component of the certificate.
© Properties:

@ correctness

e partial blindness: 7 is only known to the user and cannot be associated to a
particular protocol execution by the issuer

e unforgeability: from m runs of the protocol, it is impossible to derive more
than m valid certificates
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Partially-Blind Certification: Instantiation

(1) User Choose r,y; < Z,, compute and send: Ry := (gi'h)", T :=gf
and zero-knowledge proofs of knowledge of r and y;

(2) Signer Choose s,y» < Z, and compute R := R T
(note that R = (g7 )" with y := y1 + y».)

Send .
(51 = RXT'Sa S, = glsa 53 = g;a Sy = gifz, 55 = g%/Q)

(3) User Check whether (51, Sz, Ss, S4, Ss) is correctly formed:

? ?

(S, 2) = e(g, S3) e(Su,z) = e(g1,S5)  e(S1,XS,) £ e(R, 22)

If so, compute a certificate

(C = 511/r, G=5, G=5, G=g"Si=g, G=g8"'S=g)
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Transferable Constant-Size Fair E-Cash
@ the core of a coin in our system is a partially-blind certificate.

o Withdrawal: partially blind issuing ~~ the bank does not know Cs.
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@ the core of a coin in our system is a partially-blind certificate.
o Withdrawal: partially blind issuing ~~ the bank does not know Cs.

o Spend/Transfer: the user commit to the coin and prove validity.
Transfer ~» re-randomize the encryption ~~ unlinkable anonymity.
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Transferable Constant-Size Fair E-Cash
@ the core of a coin in our system is a partially-blind certificate.
o Withdrawal: partially blind issuing ~~ the bank does not know Cs.

o Spend/Transfer: the user commit to the coin and prove validity.
Transfer ~» re-randomize the encryption ~» unlinkable anonymity.

o Double-spending detection: the detector has the decryption key to
compare encrypted certificates.

e ~~ does not guarantee user anonymity when bank and detector cooperate.

o Gs is thus encrypted under a different key than the rest

o the detector gets only the key to decrypt Gs, which suffices to detect
double spending.
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the core of a coin in our system is a partially-blind certificate.
Withdrawal: partially blind issuing ~~ the bank does not know Gs.

Spend/Transfer: the user commit to the coin and prove validity.
Transfer ~» re-randomize the encryption ~» unlinkable anonymity.

Double-spending detection: the detector has the decryption key to
compare encrypted certificates.

e ~~ does not guarantee user anonymity when bank and detector cooperate.

o Gs is thus encrypted under a different key than the rest
o the detector gets only the key to decrypt Gs, which suffices to detect
double spending.

Traceability: the receipts, given when transferring coins, are group
signatures on them
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Transferable Constant-Size Fair E-Cash

the core of a coin in our system is a partially-blind certificate.
Withdrawal: partially blind issuing ~~ the bank does not know Gs.

Spend/Transfer: the user commit to the coin and prove validity.
Transfer ~» re-randomize the encryption ~» unlinkable anonymity.

Double-spending detection: the detector has the decryption key to
compare encrypted certificates.
e ~~ does not guarantee user anonymity when bank and detector cooperate.
o Gs is thus encrypted under a different key than the rest
o the detector gets only the key to decrypt Gs, which suffices to detect
double spending.

Traceability: the receipts, given when transferring coins, are group
signatures on them

Double-spender identification: the tracer follows backwards the paths the
certificate took before reaching the spender, by opening the receipts. A user
that spent or transferred a coin twice is then unable to show two receipts.
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Zero-knowledge Interactive Proof

Alice Bob

@ interactive method for one party to prove to another that a statement S is
true, without revealing anything other than the veracity of S.

@ Completeness: S is true ~ verifier will be convinced of this fact

@ Soundness: S is false ~~ no cheating prover can convince the verifier that S
is true

© Zero-knowledge: S is true ~» no cheating verifier learns anything other than
this fact.
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Designated Verifier Zero-Knowledge Proofs

pk

Alice Bob

@ interactive method for one party to prove to another that a statement S is
true, without revealing anything other than the veracity of S.

@ Completeness: S is true ~ verifier will be convinced of this fact

@ Soundness: S is false ~~ no cheating prover can convince the verifier that S
is true

© Zero-knowledge: S is true ~» no cheating verifier learns anything other than
this fact.
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Smooth-Projective Hash Functions

ProjHash(hp, £, C3, 7?)

ProjHash(hp, £, Cy,

Hash(hk, £, C;
correctness smoothness

o HashKG(L) generates a hashing key hk for the language £;

e ProjKG(hk, £, C) derives the projection key hp, possibly depending on a
word C € Set;

e Hash(hk, £, C) outputs the hash value of the word C from the hashing key;

e ProjHash(hp, £, C, w) outputs the hash value of the word C from the
projection key hp, and the witness w that C € L.
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Proof of a Diffie Hellman tuple

Given a group G of order p, with a generators g1 and g

L={(g],g5),r€ Z;} C G? = Set
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Proof of a Diffie Hellman tuple

Given a group G of order p, with a generators g1 and g

L={(gf,g3),r €2y} C G*> = Set

(Cramer-Shoup) SPHF:
o HashKG(L) generates a hashing key hk = (x1,x,) < Z3;
@ ProjKG(hk, £, 1) derives the projection key hp = g;*g52.
@ Hash(hk, £, C = (u1, u2)) outputs the hash value H = uf* - u3? € G.
e ProjHash(hp, £, C = (g{, g5), w = r) outputs the hash value H' = hp" € G.
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Proof of the Encryption of One Bit

Given a group G of order p, with a generators g1, g» and u

L={C=(a,0)eGIrcZyca=g N c{g, g u}}CG>=Set
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Proof of the Encryption of One Bit

Given a group G of order p, with a generators g1, g» and u

L::{C:(C]_,CQ)€G2,3r€ZP,Cl:g{/\C2€{g2r,g2r’U}}CGz:S€t

(Benhamouda, Blazy, Chevalier, Pointcheval, V.) SPHF:
o HashKG(L): hk = ((x1, %), (y1,y2)) ¢ Z4
° ProjKG(hk, £, C): hp = (g1"85",81'85", hpa = ' 3" - ¢ (c2/u)*?)
e Hash(hk, L, C): v =¢"c}?
e ProjHash(hp, £, C,r): If ¢ = g3, v/ = hpy,

else (if co = g3 - u), v/ = hpa/hp;

Application: ~- efficient blind signatures (w/o random oracles)
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Other Applications . ..

O. Blazy, D. Pointcheval, D. V.
Round-Optimal Privacy-Preserving
Protocols with Smooth Projective

Hash Functions
TCC 2012

O. Blazy, C. Chevalier, D.
Pointcheval, D. V.

Analysis and Improvement of
Lindell's UC-Secure Commitment

Schemes
ACNS 2013
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F. Benhamouda, O. Blazy, C.
Chevalier, D. Pointcheval, D. V.
Efficient UC-Secure Authenticated
Key-Exchange for Algebraic
Languages

PKC 2013

F. Benhamouda, O. Blazy, C.
Chevalier, D. Pointcheval, D. V.
New Techniques for SPHFs and
Efficient One-Round PAKE Protocols
Crypto 2013
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Conclusion

Groth-Sahai framework for NIWI/NIZK proofs
(Smooth-Projective Hash Functions)

Applications

e group signatures, blind signatures, PAKE, ...
o Efficient (offline) e-cash, e-voting systems, ...

Perspectives

o improve the efficiency of resulting protocols
(recent advances in Groth-Sahai proofs/SPHF)
e design tools for automatic generation Groth-Sahai proofs/SPHF
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