Primitives et constructions cryptographiques pour la confiance numrique

Damien Vergnaud

École normale supérieure – C.N.R.S. – I.N.R.I.A.

3 avril 2014

Desirable Properties of E-cash

- Off-line: bank not present at the time of payment
- Traceability of double spenders:
 each time a user spends a coin more than once he will be detected
- Anonymity: if a user does not spend a coin twice, she remains anonymous
- Fairness: perfect anonymity enables perfect crimes
 → an authority can trace coins that were acquired illegally
- Transferability: received e-cash can be spend without involving the bank
 - fundamental property of regular cash
 - Chaum and Pederson (1992) --> impossible without increasing the coin size

Desirable Properties of E-cash

- Off-line: bank not present at the time of payment
- Traceability of double spenders:
 each time a user spends a coin more than once he will be detected
- Anonymity: if a user does not spend a coin twice, she remains anonymous
- Transferability: received e-cash can be spend without involving the bank
 - fundamental property of regular cash
 - Chaum and Pederson (1992) \leadsto impossible without increasing the coin size

Desirable Properties of E-cash

- Off-line: bank not present at the time of payment
- Traceability of double spenders:
 each time a user spends a coin more than once he will be detected
- Anonymity: if a user does not spend a coin twice, she remains anonymous
- Transferability: received e-cash can be spend without involving the bank
 - fundamental property of regular cash
 - Chaum and Pederson (1992) → impossible without increasing the coin size

The Concept of Transferable E-cash

Contents

- Introduction
- Groth-Sahai proof system
 - Non-interactive Zero-Knowledge proofs
 - Bilinear maps
 - Groth-Ostrovsky-Sahai
 - Groth-Sahai
- Application: Transferable E-Cash
 - Design principle
 - Partially-Blind Certification
 - Transferable Anonymous Constant-Size Fair E-Cash from Certificates
- (Smooth-Projective Hash Functions)
 - Definitions
 - Examples
- Conclusion

Zero-Knowledge Proof Systems

- Goldwasser, Micali and Rackoff introduced interactive zero-knowledge proofs in 1985
 - the paper was rejected a couple of times
 - . . . then they won the Gödel award for it

→ proofs that reveal nothing other than the validity of assertion being prover

- Central tool in study of cryptographic protocols
 - Anonymous credentials
 - Online voting
 -

Zero-Knowledge Proof Systems

- Goldwasser, Micali and Rackoff introduced interactive zero-knowledge proofs in 1985
 - the paper was rejected a couple of times
 - ...then they won the Gödel award for it
 - ightsquigarrow proofs that reveal nothing other than the validity of assertion being proven
- Central tool in study of cryptographic protocols
 - Anonymous credentials
 - Online voting
 -

Zero-Knowledge Proof Systems

- Goldwasser, Micali and Rackoff introduced interactive zero-knowledge proofs in 1985
 - the paper was rejected a couple of times
 - ...then they won the Gödel award for it
 - \leadsto proofs that reveal nothing other than the validity of assertion being proven
- Central tool in study of cryptographic protocols
 - Anonymous credentials
 - Online voting
 - . . .

Zero-knowledge Interactive Proof

- interactive method for one party to prove to another that a statement \mathcal{S} is true, without revealing anything other than the veracity of \mathcal{S} .
- **Output** Completeness: $\mathcal S$ is true \leadsto verifier will be convinced of this fact
- **② Soundness:** \mathcal{S} is false \leadsto no cheating prover can convince the verifier that \mathcal{S} is true
- \odot **Zero-knowledge:** $\mathcal S$ is true \leadsto no cheating verifier learns anything other than this fact. (weaker version: **Witness indistinguishability**)

Zero-knowledge Interactive Proof

- interactive method for one party to prove to another that a statement $\mathcal S$ is true, without revealing anything other than the veracity of $\mathcal S$.
- $\textbf{ 0 Completeness: } \mathcal{S} \text{ is true} \leadsto \text{verifier will be convinced of this fact}$
- **Soundness:** $\mathcal S$ is false \leadsto no cheating prover can convince the verifier that $\mathcal S$ is true
- ② Zero-knowledge: S is true → no cheating verifier learns anything other than this fact. (weaker version: Witness indistinguishability)

Non-interactive Zero-knowledge Proof

- non-interactive method for one party to prove to another that a statement $\mathcal S$ is true, without revealing anything other than the veracity of $\mathcal S$.
- $\textbf{ 0 Completeness: } \mathcal{S} \text{ is true} \leadsto \text{verifier will be convinced of this fact}$
- **Soundness:** $\mathcal S$ is false \leadsto no cheating prover can convince the verifier that $\mathcal S$ is true
- Sero-knowledge: S is true → no cheating verifier learns anything other than this fact. (weaker version: Witness indistinguishability)

Inefficient NIZK

- Blum-Feldman-Micali, 1988.
- Damgard, 1992.
- Killian-Petrank, 1998.
- Feige-Lapidot-Shamir, 1999.
- De Santis-Di Crescenzo-Persiano, 2002.

- Groth-Ostrovsky-Sahai, 2006.
- Groth-Sahai, 2008

Inefficient NIZK

- Blum-Feldman-Micali, 1988.
- Damgard, 1992.
- Killian-Petrank, 1998.
- Feige-Lapidot-Shamir, 1999.
- De Santis-Di Crescenzo-Persiano, 2002.

- Groth-Ostrovsky-Sahai, 2006.
- Groth-Sahai, 2008.

Inefficient NIZK

- Blum-Feldman-Micali, 1988.
- Damgard, 1992.
- Killian-Petrank, 1998.
- Feige-Lapidot-Shamir, 1999.
- De Santis-Di Crescenzo-Persiano, 2002.

- Groth-Ostrovsky-Sahai, 2006.
- Groth-Sahai, 2008.

Inefficient NIZK

- Blum-Feldman-Micali, 1988.
- Damgard, 1992.
- Killian-Petrank, 1998.
- Feige-Lapidot-Shamir, 1999.
- De Santis-Di Crescenzo-Persiano, 2002.

- Groth-Ostrovsky-Sahai, 2006.
- Groth-Sahai, 2008.

Applications of NIZK Proofs

- Fancy signature schemes
 - group signatures
 - ring signatures
 - . . .
- Efficient non-interactive proof of correctness of shuffle
- Non-interactive anonymous credentials
- CCA-2-secure encryption schemes
- Identification
- E-cash
- . . .

Composite order bilinear structure: What?

 $(e, \mathbb{G}, \mathbb{G}_T, g, n)$ bilinear structure:

- \mathbb{G} , \mathbb{G}_T multiplicative groups of order n = pqn = RSA integer
- $\bullet \langle g \rangle = \mathbb{G}$
- $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G} \tau$
 - $\langle e(g,g)\rangle = \mathbb{G}_{\mathbb{T}}$
 - \bullet $e(g^a, g^b) = e(g, g)^{ab}, a, b \in \mathbb{Z}$

deciding group membership, group operations, afficiently computable. bilinear map

Composite order bilinear structure: How ?

- Groups are instantiated using supersingular elliptic curves E over finite fields \mathbb{F}_{ℓ} , ℓ mod -1(modn) prime.
- Groups are very large: $N \ge 2^{2048}$ to prevent factoring attack.
- Pairings are **slow**:

usual pairing-based crypto	$\mathbb{G}\subset E(\mathbb{F}_\ell)\simeq extbf{256}$ bits
(prime-order curve)	$\mathbb{G}_{\mathcal{T}}\subset \mathbb{F}_{ ho_6}^*\simeq 2048$ bits
	3 ms pairing
composite-order groups	$\mathbb{G}\subset E(\mathbb{F}_\ell)\simeq 2048$ bits
(supersingular curve)	$\mathbb{G}_{\mathcal{T}} \subset \mathbb{F}_{\ell^2}^* \simeq$ 4096 bits
	150 ms pairing

Conclusion: composite-order elliptic curves negates many advantages of ECC

Composite order bilinear structure: Why?

① Deciding Diffie-Hellman tuples: given $(g, g^a, g^b, g^c) \in \mathbb{G}^4$

$$c = ab \iff e(g^a, g^b) = e(g, g^c)$$

② If $h^q = 1$: for all $v \in \mathbb{G}$

$$e(h,v)^q=1$$

$$e(g^ah^b,g)^q=e(g,g)^a$$

Applications: "Somewhat homomorphic" encryption, Traitor tracing, Ring and group signatures. Attribute-based encryption, Fully secure HIBE.....

Composite order bilinear structure: Why?

① Deciding Diffie-Hellman tuples: given $(g, g^a, g^b, g^c) \in \mathbb{G}^4$

$$c = ab \iff e(g^a, g^b) = e(g, g^c)$$

② If $h^q = 1$: for all $v \in \mathbb{G}$

$$e(h, v)^q = 1$$

$$e(g^ah^b,g)^q=e(g,g)^a$$

Applications: "Somewhat homomorphic" encryption, Traitor tracing, Ring and group signatures, Attribute-based encryption, Fully secure HIBE, . . .

Composite order bilinear structure: Why?

① Deciding Diffie-Hellman tuples: given $(g, g^a, g^b, g^c) \in \mathbb{G}^4$

$$c = ab \iff e(g^a, g^b) = e(g, g^c)$$

② If $h^q = 1$: for all $v \in \mathbb{G}$

$$e(h, v)^q = 1$$

$$e(g^ah^b,g)^q=e(g,g)^a$$

Applications: "Somewhat homomorphic" encryption, Traitor tracing, Ring and group signatures, Attribute-based encryption, Fully secure HIBE, . . .

Boneh-Goh-Nissim Encryption Scheme

Public key: $(e, \mathbb{G}, \mathbb{G}_T, n)$ bilinear structure with n = pq

 $g, h \in \mathbb{G}$ with ord(h) = q.

Secret key: p, q

Encryption: $c = g^m h^r \ (r \stackrel{R}{\leftarrow} \mathbb{Z}_n)$

Decryption: $c^q = (g^m h^r)^q = g^{mq} h^{qr} = (g^q)^m \text{ (+ discrete log)}$

IND-CPA-secure under the:

Subgroup Membership Assumption

Hard to distinguish $h \in \mathbb{G}$ of order q from random h of order n

Boneh-Goh-Nissim Commitment Scheme

Public key: $(e, \mathbb{G}, \mathbb{G}_T, n)$ bilinear structure with n = pq $g, h \in \mathbb{G}$ with ord(h) = q.

Commitment: $c = g^m h^r \ (r \stackrel{R}{\leftarrow} \mathbb{Z}_n)$

- Perfectly binding: unique m mod p
- Computationally hiding: indistinguishable from h of order n
- Addition: $(g^a h^r) \cdot (g^b h^s) = g^{a+b} h^{r+s}$
- Multiplication:

$$e(g^{a}h^{r}, g^{b}h^{s}) = e(g^{a}, g^{b})e(h^{r}, g^{b})e(g^{a}, h^{s})e(h^{r}, h^{s})$$

= $e(g, g)^{ab}e(h, g^{as+rb}h^{rs})$

Groth-Ostrovsky-Sahai: NIZK Proof for Circuit SAT

- Groth, Ostrovsky and Sahai (2006)
 - Perfect completeness, perfect soundness, computational zero-knowledge for NP
 - Common reference string: O(k) bits
 - Proof: O(|C|k) bits
- Circuit-SAT is **NP-complete**

Idea:

- Commit w_i using BGN encryption
- Prove the validity using homomorphic properties

NIZK Proof for Circuit SAT

- Prove $w_i \in \{0,1\}$ for $i \in \{1,2,3,4\}$
- Prove $w_4 = \neg (w_1 \land w_2)$
- Prove $1 = \neg(w_3 \land w_4)$

Proof for c Containing 0 or 1

- $w \mod p \in \{0,1\} \iff w(w-1) = 0 \mod p$
- For $c = g^{\mathbf{w}} h^r$ we have

$$e(c, cg^{-1}) = e(g^{w}h^{r}, g^{w-1}h^{r})$$

$$= e(g^{w}, g^{w-1})e(h^{r}, g^{w-1})e(g^{w}, h^{r})e(h^{r}, h^{r})$$

$$= e(g, g)^{w(w-1)}e(h, (g^{2w-1}h^{r})^{r})$$

- $\pi = g^{2w-1}h^r = \text{proof that } c \text{ contains } 0 \text{ or } 1 \text{ mod } p$. (c detemines w uniquely mod p since ord(h) = q)
- Randomizable proof!

Proof for c Containing 0 or 1

- $w \mod p \in \{0,1\} \iff w(w-1) = 0 \mod p$
- For $c = g^{\mathbf{w}} h^r$ we have

$$e(c, cg^{-1}) = e(g^{w}h^{r}, g^{w-1}h^{r})$$

$$= e(g^{w}, g^{w-1})e(h^{r}, g^{w-1})e(g^{w}, h^{r})e(h^{r}, h^{r})$$

$$= e(g, g)^{w(w-1)}e(h, (g^{2w-1}h^{r})^{r})$$

- $\pi = g^{2w-1}h^r = \text{proof that } c \text{ contains } 0 \text{ or } 1 \text{ mod } p$. (c detemines w uniquely mod p since ord(h) = q)
- Randomizable proof!

A Simple Observation

<i>b</i> ₀	b_1	<i>b</i> ₂	$b_0 + b_1 + 2b_2 - 2$
0	0	0	-2
0	0	1	0
0	1	0	-1
0	1	1	1
1	0	0	-1
1	0	0	-1
1	0	1	1
1	1	0	0
1	1	1	2

$$b_2 = \neg(b_0 \land b_1) \iff b_0 + b_1 + 2b_2 - 2 \in \{0, 1\}$$

A Simple Observation

<i>b</i> ₀	b_1	<i>b</i> ₂	$b_0 + b_1 + 2b_2 - 2$
0	0	0	-2
0	0	1	0
0	1	0	-1
0	1	1	1
1	0	0	-1
1	0	0	-1
1	0	1	1
1	1	0	0
1	1	1	2

$$b_2 = \neg(b_0 \land b_1) \iff b_0 + b_1 + 2b_2 - 2 \in \{0, 1\}$$

Proof for NAND-gate

- Given c_1 , c_2 and c_4 commitments for bits w_1 , w_2 , $w_4 \rightarrow$ Wish to prove $w_4 = \neg(w_1 \land w_2)$. i.e. $w_1 + w_2 + 2w_4 - 2 \in \{0, 1\}$
- We have

$$c_1c_2c_4^2g^{-2} = (g^{w_0}h^{r_0}) \cdot (g^{w_1}h^{r_1}) \cdot (g^{w_4}h^{r_4})^2g^{-2}$$

= $g^{w_0+w_1+2w_4-2}h^{r_0+r_1+2r_4}$

• Prove that $c_1c_2c_4^2g^{-2}$ contains 0 or 1

NIZK Proof for Circuit SAT

- Prove $w_i \in \{0,1\}$ for $i \in \{1,2,3,4\} \rightarrow 2k$ bits Prove $w_4 = \neg(w_1 \land w_2) \rightarrow k$ bits Prove $1 = \neg(w_3 \land w_4) \rightarrow k$ bits
- CRS size: 3k **bits** Proof size: (2|W| + |C|)k **bits**

Subgroup Membership Assumption

Hard to distinguish $h \in \mathbb{G}$ of order q from random h of order n

Simulation

simulated CRS

h of order n by choosing $g = h^T$

- ullet the simulation trapdoor is au
- \leadsto perfectly hiding trapdoor commitments

Subgroup Membership Assumption

Hard to distinguish $h \in \mathbb{G}$ of order q from random h of order n

Simulation

simulated CRS

h of order n by choosing
$$g = h^{\tau}$$

- ullet the simulation trapdoor is au
- → perfectly hiding trapdoor commitments

$$g^{1}h^{r_{1}} = c_{1}$$
 $g^{1}h^{r_{2}} = c_{2}$
 $g^{1}h^{r_{3}} = c_{3}$

Subgroup Membership Assumption

Hard to distinguish $h \in \mathbb{G}$ of order q from random h of order n

Simulation

simulated CRS

h of order n by choosing
$$g = h^{\tau}$$

- ullet the simulation trapdoor is au
- → perfectly hiding trapdoor commitments

Witness-indistinguishable 0/1-proof

- $c_1 = g^1 h^{r_1}$
 - $\pi_1 = (gh^{r_1})^{r_1}$ is the proof that c_1 contains 1
- $c_1 = g^1 h^{r_1} = g^0 g h^{r_1} = g^0 h^{\tau + r_1}$
 - $\pi_0 = (g^{-1}h^{\tau+r_1})^{\tau+r_1}$ is the proof that c_1 contains 0

$$\pi_0 = (g^{-1}h^{\tau+r_1})^{\tau+r_1} = (g^{-1}h^{\tau})^{\tau+r_1}(h^{r_1})^{r_1+\tau} = (h^{r_1+\tau})^{r_1} = (g^1h^{r_1})^{r_1} = \pi_1$$

Witness-indistinguishable NAND-proof

We have

$$c_1c_2c_4^2g^{-2} = (g^1h^{r_1}) \cdot (g^1h^{r_2}) \cdot (g^1h^{r_4})^2g^{-2}$$

$$= g^2h^{r_0+r_1+2r_4}$$

$$= g^1h^{\tau+r_1+r_2+2r_4}$$

Computational ZK → Subgroup membership assumption

Perfect completeness and soundness, computational zero-knowledge for NP

- Idea:
 - Commit bits using BGN encryption
 - Prove the validity using homomorphic properties

$$e(g^{w}, g^{w}g^{-1}) = 1 \leadsto e(c, cg^{-1}) = e(h, \pi)$$

- Common reference string: O(k) bits
- Proof: O(|C|k) bits

• Perfect completeness and soundness, computational zero-knowledge for NP

- Idea:
 - Commit bits using BGN encryption
 - Prove the validity using homomorphic properties

$$e(g^{w}, g^{w}g^{-1}) = 1 \leadsto e(c, cg^{-1}) = e(h, \pi)$$

- Common reference string: O(k) bits
- Proof: O(|C|k) bits

witness-indistinguishability

• Perfect completeness and soundness, #omplytational/#eyo/knowledge for NP

- Idea:
 - Commit bits using BGN encryption
 - Prove the validity using homomorphic properties

$$e(g^{w}, g^{w}g^{-1}) = 1 \leadsto e(c, cg^{-1}) = e(h, \pi)$$

- Common reference string: O(k) bits
- Proof: O(|C|k) bits

witness-indistinguishability

• Idea:

- Commit bits using BGN encryption
- Prove the validity using homomorphic properties

$$e(g^{w}, g^{w}g^{-1}) = 1 \leadsto e(c, cg^{-1}) = e(h, \pi)$$

- Common reference string: O(k) bits
- Proof: O(|C|k) bits

witness-indistinguishability

- Idea: group elements
 - Commit hits using BGN encryption
 - Prove the validity using homomorphic properties

$$e(g^{w}, g^{w}g^{-1}) = 1 \leadsto e(c, cg^{-1}) = e(h, \pi)$$

- Common reference string: O(k) bits
- Proof: O(|C|k) bits

witness-indistinguishability

- Idea: group elements
 - Commit **bit**\$ using **BGN** encryption
 - Prove the validity using homomorphic properties

$$e(g^{w}, g^{w}g^{-1}) = 1 \leadsto e(c, cg^{-1}) = e(h, \pi)$$

- Common reference string: O(k) bits
- Proof: O(|C|k) bits

witness-indistinguishability

- Idea: group elements
 - Commit **b**its using BCW encryption
 - Prove the validity using homomorphic properties

$$e(g^{w}, g^{w}g^{-1}) = 1 \leadsto e(c, cg^{-1}) = e(h, \pi)$$

- Common reference string: O(k) bits
- Proof: \(\mathcal{Q} \) \(\mathcal{Q} \) \(\mathcal{R} \) bits
 \(\mathcal{O} \) \(|E|k \)

Asymmetric bilinear structure

 $(e, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, g_1, g_2, p)$ bilinear structure:

- \mathbb{G}_1 , \mathbb{G}_2 \mathbb{G}_T multiplicative groups of order p
 - p = prime integer

•
$$\langle g_i \rangle = \mathbb{G}_i$$

•
$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$$

•
$$\langle e(g_1,g_2)\rangle = \mathbb{G}_{\mathbb{T}}$$

•
$$e(g_1^a, g_2^b) = e(g_1, g_2)^{ab}$$
, $a, b \in \mathbb{Z}$

- deciding group membership, group operations, afficiently computable.
 - bilinear map

ElGamal Encryption Scheme

Public key: $(e, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, g_1, g_2, p)$ $g_i, u_i = g_i^{\times} \in \mathbb{G}$

Secret key: x

Encryption: $(c_1, c_2) = (g_1^{\alpha}, mu_i^{\alpha+\beta}) (\alpha, \beta \stackrel{R}{\leftarrow} \mathbb{Z}_p)$

Decryption: $c_2/(c_1^x = m$

IND-CPA-secure under the:

Decision Diffie-Hellman Assumption in \mathbb{G}_i

given (g_i, h_i, g_i^{α}) , Hard to distinguish h_i^{α} from random

Double ElGamal Commitment Scheme

Commitment key:
$$(e, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, g_1, g_2, p)$$

 $u \in \mathbb{G}_1^{2 \times 2},$
 $v \in \mathbb{G}_2^{2 \times 2}$

Commitment in \mathbb{G}_a : $(c_1, c_2) = (u_{1,1}^{\alpha} u_{2,1}^{\beta}, m u_{1,2}^{\alpha} u_{2,2}^{\beta})$

- Perfectly binding: if $u = (u_{1,1} = g, u_{1,2} = g^{\mu}, u_{2,1} = g^{\nu}, u_{2,2} = g^{\mu\nu})$
- Perfectly hiding: if $u = (u_{1,1} = g, u_{1,2} = g^{\mu}, u_{2,1} = g^{\nu}, u_{2,2} = g^{\mu\nu+1})$
- Homomorphic: $(c_1, c_2) \cdot (c_1', c_2') = (u_{1,1}^{\alpha + \alpha'} u_{2,1}^{\beta + \beta'}, (mm') u_{1,2}^{\alpha + \alpha'} u_{2,2}^{\beta + \beta'})$

Keys are indistinguishable under DDH Assumption in \mathbb{G}_1 and $\mathbb{G}_2 \leadsto \mathsf{SXDH}$

Groth-Sahai Proof System

Groth-Sahai Proof System

• Pairing product equation (PPE): for variables $\mathcal{X}_1, \dots, \mathcal{X}_n \in \mathbb{G}_1$, $\mathcal{Y}_1, \dots, \mathcal{Y}_m \in \mathbb{G}_2$

$$(E): \prod_{i=1}^n e(\mathcal{X}_i, A_i) \prod_{j=1}^m e(B_j, \mathcal{Y}_j) \prod_{i=1}^n \prod_{j=1}^m e(\mathcal{X}_i, \mathcal{Y}_j)^{\gamma_{i,j}} = t_T$$

determined by $A_i \in \mathbb{G}_2$, $B_j \in \mathbb{G}_1$, $\gamma_{i,j} \in \mathbb{Z}_p$ and $t_T \in \mathbb{G}_T$.

 \bullet Groth-Sahai \leadsto WI proofs that elements in $\mathbb G$ that were committed to satisfy PPE

Assumption	SXDH	
$Variables \in \mathbb{G}$	2	1
PPE	(4,4)	1
(Linear)	2	1
Verification	5m + 3n + 16P	n+1P

O. Blazy, G. Fuchsbauer, M. Izabachène, A. Jambert, H. Sibert, D. V. Batch Groth-Sahai. ACNS 2010

Groth-Sahai Proof System

Groth-Sahai Proof System

• Pairing product equation (PPE): for variables $\mathcal{X}_1, \ldots, \mathcal{X}_n \in \mathbb{G}_1$, $\mathcal{Y}_1, \ldots, \mathcal{Y}_m \in \mathbb{G}_2$

$$(E): \prod_{i=1}^n e(\mathcal{X}_i, A_i) \prod_{j=1}^m e(B_j, \mathcal{Y}_j) \prod_{i=1}^n \prod_{j=1}^m e(\mathcal{X}_i, \mathcal{Y}_j)^{\gamma_{i,j}} = t_T$$

determined by $A_i \in \mathbb{G}_2$, $B_i \in \mathbb{G}_1$, $\gamma_{i,j} \in \mathbb{Z}_p$ and $t_T \in \mathbb{G}_T$.

 Groth-Sahai → WI proofs that elements in G that were committed to satisfy PPE

Assumption	SXDH	SD
$Variables \in \mathbb{G}$	2	1
PPE	(4,4)	1
(Linear)	2	1
Verification	5 m + 3 n + 16 P	n+1 P

Groth-Sahai Proof System

Groth-Sahai Proof System

• Pairing product equation (PPE): for variables $\mathcal{X}_1, \dots, \mathcal{X}_n \in \mathbb{G}_1$, $\mathcal{Y}_1, \dots, \mathcal{Y}_m \in \mathbb{G}_2$

$$(E): \prod_{i=1}^n e(\mathcal{X}_i, A_i) \prod_{j=1}^m e(B_j, \mathcal{Y}_j) \prod_{i=1}^n \prod_{j=1}^m e(\mathcal{X}_i, \mathcal{Y}_j)^{\gamma_{i,j}} = t_T$$

determined by $A_i \in \mathbb{G}_2$, $B_j \in \mathbb{G}_1$, $\gamma_{i,j} \in \mathbb{Z}_p$ and $t_T \in \mathbb{G}_T$.

 \bullet Groth-Sahai \leadsto WI proofs that elements in $\mathbb G$ that were committed to satisfy PPE

Assumption	SXDH	SD
$Variables \in \mathbb{G}$	2	1
PPE	(4,4)	1
(Linear)	2	1
Verification	m + 2n + 8P	n+1 P

O. Blazy, G. Fuchsbauer, M. Izabachène, A. Jambert, H. Sibert, D. V. Batch Groth-Sahai. ACNS 2010

Groth-Sahai Proof System: NIWI

$$(E): \prod_{i=1}^n e(\mathcal{X}_i, A_i) \prod_{j=1}^m e(B_j, \mathcal{Y}_j) \prod_{i=1}^n \prod_{j=1}^m e(\mathcal{X}_i, \mathcal{Y}_j)^{\gamma_{i,j}} = t_T$$

Setup on input the bilinear group \leadsto output a commitment key \mathbf{ck} Com on input \mathbf{ck} , $X \in \mathbb{G}$, randomness $\rho \leadsto$ output commitment $\vec{c_X}$ to X Prove on input \mathbf{ck} , $(X_i, \rho_i)_{i=1,...,n}$ and $(E) \leadsto$ output a proof ϕ Verify on input \mathbf{ck} , $\vec{c_{X_i}}$, (E) and $\phi \leadsto$ output 0 or 1

Properties

- correctness: honestly generated proofs are accepted by Verify
- soundness: perfectly binding key
- witness-indistinguishability: perfectly hiding key

Remark: such equations are not known to always have NIZK proofs

Groth-Sahai Proof System: NIWI

$$(E): \prod_{i=1}^n e(\mathcal{X}_i, A_i) \prod_{j=1}^m e(B_j, \mathcal{Y}_j) \prod_{i=1}^n \prod_{j=1}^m e(\mathcal{X}_i, \mathcal{Y}_j)^{\gamma_{i,j}} = t_{\mathcal{T}}$$

Setup on input the bilinear group \leadsto output a commitment key \mathbf{ck} Com on input \mathbf{ck} , $X \in \mathbb{G}$, randomness $\rho \leadsto$ output commitment $\vec{c_X}$ to X Prove on input \mathbf{ck} , $(X_i, \rho_i)_{i=1,\dots,n}$ and $(E) \leadsto$ output a proof ϕ Verify on input \mathbf{ck} , $\vec{c_{X_i}}$, (E) and $\phi \leadsto$ output 0 or 1

Properties:

- correctness: honestly generated proofs are accepted by Verify
- soundness: perfectly binding key
- witness-indistinguishability: perfectly hiding key

Remark: such equations are not known to always have NIZK proofs

Groth-Sahai Proof System: NIWI

$$(E): \prod_{i=1}^n e(\mathcal{X}_i, A_i) \prod_{j=1}^m e(B_j, \mathcal{Y}_j) \prod_{i=1}^n \prod_{j=1}^m e(\mathcal{X}_i, \mathcal{Y}_j)^{\gamma_{i,j}} = t_T$$

Setup on input the bilinear group \leadsto output a commitment key \mathbf{ck} Com on input \mathbf{ck} , $X \in \mathbb{G}$, randomness $\rho \leadsto$ output commitment $\vec{c_X}$ to X Prove on input \mathbf{ck} , $(X_i, \rho_i)_{i=1,...,n}$ and $(E) \leadsto$ output a proof ϕ Verify on input \mathbf{ck} , $\vec{c_{X_i}}$, (E) and $\phi \leadsto$ output 0 or 1

Properties:

- correctness: honestly generated proofs are accepted by Verify
- soundness: perfectly binding key
- witness-indistinguishability: perfectly hiding key

Remark: such equations are not known to always have NIZK proofs

Contents

- Introduction
- @ Groth-Sahai proof system
 - Non-interactive Zero-Knowledge proofs
 - Bilinear maps
 - Groth-Ostrovsky-Sahai
 - Groth-Sahai
- Application: Transferable E-Cash
 - Design principle
 - Partially-Blind Certification
 - Transferable Anonymous Constant-Size Fair E-Cash from Certificates
- (Smooth-Projective Hash Functions)
 - Definitions
 - Examples
- Conclusion

Users: withdraw, transfer or spend coins (registered to a system manager S)

Shop: to which coins are spent

Users

Alice

Bank B: issue coins

Double-spending detector \mathcal{D} : check (on deposit) if a coin has already been spent (coins can be easily duplicated \leadsto copies of cash should not be spendable.)

Tracer \mathcal{T} : trace coins, revoke anonymity and identify double-spenders.

Transferable E-cash: Our Construction

- in our scheme, coins are transferable while remaining constant in size
- we circumvent the impossibility with a new method to trace double spenders:
 - users keep receipts when receiving coins
 (instead of storing all information about transfers inside the coin)
- anonymous w.r.t. an entity issuing coins and able to detect double spendings.
- the construction: our new primitive + the Groth-Sahai proof system

G. Fuchsbauer, D. Pointcheval, D. V. Transferable Constant-Size Fair E-Cash. CANS 2009

A New Primitive: Partially-Blind Certification

- = 4-tuple of (interactive) PPTs:
 - Setup: $k \rightsquigarrow (pk, sk)$
 - Sign and User are interactive PPTs s.t.:
 - User: $pk \leadsto (\sigma, \tau)$ or \bot
 - **Sign**: $sk \leadsto \text{completed}$ or not-completed

(certificate issuing protocol)

- **Verif**: $(pk, (\sigma, \tau)) \rightsquigarrow \text{accept or reject.}$
- $(\sigma, \tau) = \text{certificate for } pk$
- Properties:
 - correctness
 - partial blindness: τ is only known to the user and cannot be associated to a particular protocol execution by the issuer
 - unforgeability: from m runs of the protocol, it is impossible to derive more than m valid certificates

A New Primitive: Partially-Blind Certification

- = 4-tuple of (interactive) PPTs:
 - **Setup**: $k \rightsquigarrow (pk, sk)$
 - Sign and User are interactive PPTs s.t.:
 - User: $pk \rightsquigarrow (\sigma, \tau)$ or \bot
 - **Sign**: $sk \rightsquigarrow \text{completed or not-completed}$

(certificate issuing protocol)

- **Verif**: $(pk, (\sigma, \tau)) \rightsquigarrow \text{accept or reject.}$
- **2** $\tau =$ blind component of the certificate.
- Properties:
 - correctness
 - partial blindness: τ is only known to the user and cannot be associated to a particular protocol execution by the issuer
 - unforgeability: from m runs of the protocol, it is impossible to derive more than m valid certificates

Partially-Blind Certification: Instantiation

- (1) User Choose $r, y_1 \leftarrow \mathbb{Z}_p$, compute and send: $R_1 := (g_1^{y_1} h_1)^r$, $T := g_1^r$ and zero-knowledge proofs of knowledge of r and y_1
- (2) Signer Choose $s, y_2 \leftarrow \mathbb{Z}_p$ and compute $R := R_1 T^{y_2}$ (note that $R = (h_1 g_1^y)^r$ with $y := y_1 + y_2$.)

 Send $(S_1 := R^{\frac{1}{x+s}}, \ S_2 := g_1^s, \ S_3 := g_2^s, \ S_4 := g_1^{y_2}, \ S_5 := g_2^{y_2})$
 - (3) User Check whether $(S_1, S_2, S_3, S_4, S_5)$ is correctly formed:

$$e(S_2, g_2) \stackrel{?}{=} e(g_1, S_3) \quad e(S_4, g_2) \stackrel{?}{=} e(g_1, S_5) \quad e(S_1, XS_2) \stackrel{?}{=} e(R, g_2)$$

If so, compute a certificate

$$\left|\left(\mathsf{C}_1:=\mathsf{S}_1^{1/r},\ \mathsf{C}_2:=\mathsf{S}_2,\ \mathsf{C}_3:=\mathsf{S}_3,\ \mathsf{C}_4:=\mathsf{g}_1^{\mathsf{y}_1}\mathsf{S}_4=\mathsf{g}_1^{\mathsf{y}},\ \mathsf{C}_5:=\mathsf{g}_2^{\mathsf{y}_1}\mathsf{S}_5=\mathsf{g}_2^{\mathsf{y}}
ight)
ight|$$

- the core of a coin in our system is a partially-blind certificate.
- Withdrawal: partially blind issuing \rightsquigarrow the bank does not know C_5 .
- **Spend/Transfer**: the user commit to the coin and prove validity.

- the core of a coin in our system is a partially-blind certificate.
- Withdrawal: partially blind issuing \rightsquigarrow the bank does not know C_5 .
- Spend/Transfer: the user commit to the coin and prove validity.
 Transfer → re-randomize the encryption → unlinkable anonymity.
- Double-spending detection: the detector has the decryption key to compare encrypted certificates.
 - ~ does not guarantee user anonymity when bank and detector cooperate
 - \bullet C_5 is thus encrypted under a different key than the rest
 - the detector gets only the key to decrypt C_5 , which suffices to detect double spending.
- **Traceability:** the receipts, given when transferring coins, are group signatures on them
- Double-spender identification: the tracer follows backwards the paths th
 certificate took before reaching the spender, by opening the receipts. A use
 that spent or transferred a coin twice is then unable to show two receipts.

40 > 40 > 45 > 45 >

- the core of a coin in our system is a partially-blind certificate.
- Withdrawal: partially blind issuing \rightsquigarrow the bank does not know C_5 .
- Spend/Transfer: the user commit to the coin and prove validity.
 Transfer → re-randomize the encryption → unlinkable anonymity.
- Double-spending detection: the detector has the decryption key to compare encrypted certificates.
 - \leadsto does not guarantee user anonymity when bank and detector cooperate.
 - \bullet C_5 is thus encrypted under a different key than the rest
 - the detector gets only the key to decrypt C₅, which suffices to detect double spending.
- **Traceability:** the receipts, given when transferring coins, are group signatures on them
- Double-spender identification: the tracer follows backwards the paths the
 certificate took before reaching the spender, by opening the receipts. A user
 that spent or transferred a coin twice is then unable to show two receipts.

- the core of a coin in our system is a partially-blind certificate.
- Withdrawal: partially blind issuing \rightsquigarrow the bank does not know C_5 .
- Spend/Transfer: the user commit to the coin and prove validity.
 Transfer → re-randomize the encryption → unlinkable anonymity.
- Double-spending detection: the detector has the decryption key to compare encrypted certificates.
 - \leadsto does not guarantee user anonymity when bank and detector cooperate.
 - \bullet C_5 is thus encrypted under a different key than the rest
 - the detector gets only the key to decrypt C₅, which suffices to detect double spending.
- **Traceability:** the receipts, given when transferring coins, are group signatures on them
- Double-spender identification: the tracer follows backwards the paths the
 certificate took before reaching the spender, by opening the receipts. A user
 that spent or transferred a coin twice is then unable to show two receipts.

4 D > 4 B > 4 B > 4 B >

- the core of a coin in our system is a partially-blind certificate.
- Withdrawal: partially blind issuing \rightsquigarrow the bank does not know C_5 .
- Spend/Transfer: the user commit to the coin and prove validity.
 Transfer → re-randomize the encryption → unlinkable anonymity.
- Double-spending detection: the detector has the decryption key to compare encrypted certificates.
 - \leadsto does not guarantee user anonymity when bank and detector cooperate.
 - \bullet C_5 is thus encrypted under a different key than the rest
 - the detector gets only the key to decrypt C₅, which suffices to detect double spending.
- **Traceability:** the receipts, given when transferring coins, are group signatures on them
- Double-spender identification: the tracer follows backwards the paths the
 certificate took before reaching the spender, by opening the receipts. A user
 that spent or transferred a coin twice is then unable to show two receipts.

Contents

- Introduction
- @ Groth-Sahai proof system
 - Non-interactive Zero-Knowledge proofs
 - Bilinear maps
 - Groth-Ostrovsky-Sahai
 - Groth-Sahai
- Application: Transferable E-Cash
 - Design principle
 - Partially-Blind Certification
 - Transferable Anonymous Constant-Size Fair E-Cash from Certificates
- 4 (Smooth-Projective Hash Functions)
 - Definitions
 - Examples
- Conclusion

Zero-knowledge Interactive Proof

- interactive method for one party to prove to another that a statement \mathcal{S} is true, without revealing anything other than the veracity of S.
- **Operation** Completeness: S is true \rightsquigarrow verifier will be convinced of this fact
- **2** Soundness: S is false \rightsquigarrow no cheating prover can convince the verifier that Sis true
- **3 Zero-knowledge:** S is true \rightarrow no cheating verifier learns anything other than this fact.

Designated Verifier Zero-Knowledge Proofs

- interactive method for one party to prove to another that a statement $\mathcal S$ is true, without revealing anything other than the veracity of $\mathcal S$.
- **Soundness:** $\mathcal S$ is false \leadsto no cheating prover can convince the verifier that $\mathcal S$ is true
- **2 Ero-knowledge:** S is true \leadsto no cheating verifier learns anything other than this fact.

Smooth-Projective Hash Functions

- $\mathsf{HashKG}(\mathcal{L})$ generates a hashing key hk for the language \mathcal{L} ;
- **ProjKG**(hk, \mathcal{L} , \mathcal{C}) derives the projection key hp, possibly depending on a word $\mathcal{C} \in \mathcal{S}et$;
- $\mathsf{Hash}(\mathsf{hk},\mathcal{L},\mathcal{C})$ outputs the hash value of the word \mathcal{C} from the hashing key;
- **ProjHash**(hp, \mathcal{L} , \mathcal{C} , w) outputs the hash value of the word \mathcal{C} from the projection key hp, and the witness w that $\mathcal{C} \in \mathcal{L}$.

Proof of a Diffie Hellman tuple

Given a group $\mathbb G$ of order p, with a generators g_1 and g_2

$$\mathcal{L} = \{ \big(g_1^r, g_2^r\big), r \in \mathbb{Z}_p^* \} \subset \mathbb{G}^2 = \mathcal{S}et$$

(Cramer-Shoup) SPHF:

- HashKG(\mathcal{L}) generates a hashing key hk = $(x_1, x_2) \stackrel{\mathfrak{s}}{\leftarrow} \mathbb{Z}_p^2$;
- **ProjKG**(hk, \mathcal{L} , \perp) derives the projection key hp = $g_1^{x_1}g_2^{x_2}$.
- **Hash**(hk, \mathcal{L} , $C=(u_1,u_2)$) outputs the hash value $H=u_1^{x_1}\cdot u_2^{x_2}\in \mathbb{G}$.
- $\mathsf{ProjHash}(\mathsf{hp},\mathcal{L},\mathcal{C}=(g_1^r,g_2^r),w=r)$ outputs the hash value $H'=\mathsf{hp}^r\in \mathcal{G}$.

Proof of a Diffie Hellman tuple

Given a group $\mathbb G$ of order p, with a generators g_1 and g_2

$$\mathcal{L} = \{(g_1^r, g_2^r), r \in \mathbb{Z}_p^*\} \subset \mathbb{G}^2 = \mathcal{S}et$$

(Cramer-Shoup) SPHF:

- HashKG(\mathcal{L}) generates a hashing key hk = $(x_1, x_2) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$;
- **ProjKG**(hk, \mathcal{L}, \perp) derives the projection key hp = $g_1^{x_1}g_2^{x_2}$.
- $\mathsf{Hash}(\mathsf{hk},\mathcal{L},\mathcal{C}=(u_1,u_2))$ outputs the hash value $H=u_1^{\mathsf{x}_1}\cdot u_2^{\mathsf{x}_2}\in \mathbb{G}.$
- **ProjHash**(hp, \mathcal{L} , $C = (g_1^r, g_2^r), w = r$) outputs the hash value $H' = \text{hp}^r \in G$.

Proof of the Encryption of One Bit

Given a group \mathbb{G} of order p, with a generators g_1 , g_2 and u

$$\mathcal{L} = \{C = (c_1, c_2) \in \mathbb{G}^2, \exists r \in \mathbb{Z}_p, c_1 = g_1^r \land c_2 \in \{g_2^r, g_2^r \cdot u\}\} \subset \mathbb{G}^2 = \mathcal{S}et$$

(Benhamouda, Blazy, Chevalier, Pointcheval, V.) SPHF:

- HashKG(\mathcal{L}): hk = $((x_1, x_2), (y_1, y_2)) \stackrel{s}{\leftarrow} \mathbb{Z}_p^4$
- **ProjKG**(hk, \mathcal{L} , \mathcal{C}): hp = $(g_1^{x_1}g_2^{x_2}, g_1^{y_1}g_2^{y_2}, \text{hp}_{\Delta} = c_1^{x_1}c_2^{x_2} \cdot c_1^{y_1}(c_2/u)^{y_2})$
- **Hash**(hk, \mathcal{L} , \mathcal{C}): $v = c_1^{x_1} c_2^{x_2}$
- ProjHash(hp, \mathcal{L} , \mathcal{C} , \mathcal{C}): If $c_2 = g_2^r$, $v' = hp_1^r$,

else (if
$$c_2 = g_2^r \cdot u$$
), $v' = hp_{\Delta}/hp_2^r$

Application: → efficient blind signatures (w/o random oracles)

Proof of the Encryption of One Bit

Given a group \mathbb{G} of order p, with a generators g_1 , g_2 and u

$$\mathcal{L} = \{C = (c_1, c_2) \in \mathbb{G}^2, \exists r \in \mathbb{Z}_p, c_1 = g_1^r \land c_2 \in \{g_2^r, g_2^r \cdot u\}\} \subset \mathbb{G}^2 = \mathcal{S}et$$

(Benhamouda, Blazy, Chevalier, Pointcheval, V.) SPHF:

- HashKG(\mathcal{L}): hk = $((x_1, x_2), (y_1, y_2)) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^4$
- **ProjKG**(hk, \mathcal{L} , \mathcal{C}): hp = $(g_1^{x_1}g_2^{x_2}, g_1^{y_1}g_2^{y_2}, \text{hp}_{\Delta} = c_1^{x_1}c_2^{x_2} \cdot c_1^{y_1}(c_2/u)^{y_2})$
- **Hash**(hk, \mathcal{L} , C): $v = c_1^{x_1} c_2^{x_2}$
- ProjHash(hp, \mathcal{L} , \mathcal{C} , r): If $c_2 = g_2^r$, $v' = hp_1^r$,

else (if
$$c_2 = g_2^r \cdot u$$
), $v' = hp_{\Delta}/hp_2^r$

Application: → efficient blind signatures (w/o random oracles)

Other Applications . . .

O. Blazy, D. Pointcheval, D. V. Round-Optimal Privacy-Preserving Protocols with Smooth Projective Hash Functions TCC 2012

O. Blazy, C. Chevalier, D. Pointcheval, D. V. Analysis and Improvement of Lindell's UC-Secure Commitment Schemes ACNS 2013

F. Benhamouda, O. Blazy, C. Chevalier, D. Pointcheval, D. V. Efficient UC-Secure Authenticated Key-Exchange for Algebraic Languages PKC 2013

F. Benhamouda, O. Blazy, C. Chevalier, D. Pointcheval, D. V. New Techniques for SPHFs and Efficient One-Round PAKE Protocols Crypto 2013

Contents

- Introduction
- Groth-Sahai proof system
 - Non-interactive Zero-Knowledge proofs
 - Bilinear maps
 - Groth-Ostrovsky-Sahai
 - Groth-Sahai
- Application: Transferable E-Cash
 - Design principle
 - Partially-Blind Certification
 - Transferable Anonymous Constant-Size Fair E-Cash from Certificates
- (Smooth-Projective Hash Functions)
 - Definitions
 - Examples
- Conclusion

Conclusion

- Groth-Sahai framework for NIWI/NIZK proofs
- (Smooth-Projective Hash Functions)

Applications

- group signatures, blind signatures, PAKE, ...
- Efficient (offline) e-cash, e-voting systems, . . .

Perspectives

- improve the efficiency of resulting protocols (recent advances in Groth-Sahai proofs/SPHF)
- design tools for automatic generation Groth-Sahai proofs/SPHF