
Binary Code Analysis: Concepts and Perspectives

Emmanuel Fleury
<emmanuel.fleury@u-bordeaux.fr>

LaBRI, Université de Bordeaux, France

May 12, 2016

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 1 / 35



Overview

1 Introducing to Binary Code Analysis

2 Why Is Binary Analysis Special?

3 Low-level Programs Formal Model

4 Control-flow Recovery

5 Current and Future Trends

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 2 / 35



Overview

1 Introducing to Binary Code Analysis
Basic Definitions
Binary Analysis Pipeline
Practical and Theoretical Challenges

2 Why Is Binary Analysis Special?

3 Low-level Programs Formal Model

4 Control-flow Recovery

5 Current and Future Trends

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 3 / 35



Why Looking at Binary Code?

Analysis of legacy/off-the-shelf/proprietary software;

Software reverse-engineering on malware (or others);

Analysis of software generated with untrusted compiler;

To capture many low-level security issues;

Analysis of low-level interactions (hardware/OS).

Optimize a binary without the sources (recompilation).

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 4 / 35



What we mean by “Binary Programs”?

Abstract Model: All unnecessary information for the analysis have been removed.
Only necessary information remains.

Source Code: Keep track of high-level information about the program such as
variables, types, functions. But also, variable and function names, and pragmas or
code decorations.

Bytecode: May vary depending on the bytecode considered, but keep track of few
high-level information about the program such as types and functions. But, programs
are usually unstructured.

Binary File: Only keep track of the instructions in an unstructured way (no for-
loop, no clear argument passing in procedures, . . . ). No type, no naming. But, the
binary file may enclose meta-data that might be helpful (symbols, debug, . . . ).

Memory Dump: Pure assembler instructions with a full memory state of the
current execution. We do not have anymore the meta-data of the executable file.

Binary code is the closest format of what will be executed!

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 5 / 35



What we mean by “Binary Programs”?

Abstract Model: All unnecessary information for the analysis have been removed.
Only necessary information remains.

Source Code: Keep track of high-level information about the program such as
variables, types, functions. But also, variable and function names, and pragmas or
code decorations.

Bytecode: May vary depending on the bytecode considered, but keep track of few
high-level information about the program such as types and functions. But, programs
are usually unstructured.

Binary File: Only keep track of the instructions in an unstructured way (no for-
loop, no clear argument passing in procedures, . . . ). No type, no naming. But, the
binary file may enclose meta-data that might be helpful (symbols, debug, . . . ).

Memory Dump: Pure assembler instructions with a full memory state of the
current execution. We do not have anymore the meta-data of the executable file.

Binary code is the closest format of what will be executed!

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 5 / 35



What we mean by “Binary Programs”?

Abstract Model: All unnecessary information for the analysis have been removed.
Only necessary information remains.

Source Code: Keep track of high-level information about the program such as
variables, types, functions. But also, variable and function names, and pragmas or
code decorations.

Bytecode: May vary depending on the bytecode considered, but keep track of few
high-level information about the program such as types and functions. But, programs
are usually unstructured.

Binary File: Only keep track of the instructions in an unstructured way (no for-
loop, no clear argument passing in procedures, . . . ). No type, no naming. But, the
binary file may enclose meta-data that might be helpful (symbols, debug, . . . ).

Memory Dump: Pure assembler instructions with a full memory state of the
current execution. We do not have anymore the meta-data of the executable file.

Binary code is the closest format of what will be executed!

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 5 / 35



Binary Analysis Pipeline

Executable
File

Memory
Mapping

Intermediate
Representation

High-level
Code

Loader
Metadata

Disassembler
Initial CFG

Type-recovery,
Other analysis

Data-flow
Analysis

Decompiler
IR

Loader: Open the input file, parse the meta-data enclosed in the binary file and
extract the code to be mapped in memory.
Decoder: Given a sequence of bytes at an address in memory, translate it into an
intermediate representation which will be analyzed afterward.
Disassembler: Combination of a decoder and a strategy to browse through the
memory in order to recover all the control-flow of the program.
Decompiler: Translate the assembly code into a high-level language with
variables, types, functions and more (modules, objects, classes, . . . ).
Verificator: Take the high-level representation of the program and check it
against formally specified properties.

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 6 / 35



Binary Analysis Pipeline

Executable
File

Memory
Mapping

Intermediate
Representation

High-level
Code

Loader
Metadata

Disassembler
Initial CFG

Type-recovery,
Other analysis

Data-flow
Analysis

Decompiler
IR

Loader: Open the input file, parse the meta-data enclosed in the binary file and
extract the code to be mapped in memory.
Decoder: Given a sequence of bytes at an address in memory, translate it into an
intermediate representation which will be analyzed afterward.
Disassembler: Combination of a decoder and a strategy to browse through the
memory in order to recover all the control-flow of the program.
Decompiler: Translate the assembly code into a high-level language with
variables, types, functions and more (modules, objects, classes, . . . ).
Verificator: Take the high-level representation of the program and check it
against formally specified properties.

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 6 / 35



Practical and Theoretical Challenges

Trustable reconstruction of the program control-flow;

"As much as we can" automation of recovery of the control-flow;

Scaling the analysis from small to big binary software;

Performing automatic and correct, but partial, decompilation;

Verification of few accessibility properties on real binary programs;

It does not seems to be a lot,
but it is already quite tricky!

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 7 / 35



Practical and Theoretical Challenges

Trustable reconstruction of the program control-flow;

"As much as we can" automation of recovery of the control-flow;

Scaling the analysis from small to big binary software;

Performing automatic and correct, but partial, decompilation;

Verification of few accessibility properties on real binary programs;

It does not seems to be a lot,
but it is already quite tricky!

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 7 / 35



Overview

1 Introducing to Binary Code Analysis

2 Why Is Binary Analysis Special?
Unstructured Programming
Architectural Model

3 Low-level Programs Formal Model

4 Control-flow Recovery

5 Current and Future Trends

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 8 / 35



Unstructured Programming

No Advanced Programming Constructs and Types
No variable (only registers and memory accesses)
No advanced types (only: Value, Pointer or Instructions);
No advanced control-flow constructs (if-then-else, for, while, . . . );

Jump-based Programming
Static Jumps: jmp 0x12345678

Dynamic Jumps: jmp *%eax

No Function Facilities
No Function Type or Definition;
No Argument Passing Facilities;
No Procedural Context Facilities;

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 9 / 35



Architectural Model

Harvard Architecture
First implemented in the Mark I (1944).
Keep program and data separated.
Allows to fetch data and instructions in
the same time.

CPU

Program
Memory

Data
Memory

Bus Bus

Princeton Architecture (Von Neumann)

First implemented in the ENIAC (1946).
Allows self-modifying code and
entanglement of program and data.

CPU

Memory
(program and data)

Bus

High-level programming

Low-level programming

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 10 / 35



Architectural Model

Harvard Architecture
First implemented in the Mark I (1944).
Keep program and data separated.
Allows to fetch data and instructions in
the same time.

CPU

Program
Memory

Data
Memory

Bus Bus

Princeton Architecture (Von Neumann)

First implemented in the ENIAC (1946).
Allows self-modifying code and
entanglement of program and data.

CPU

Memory
(program and data)

Bus

High-level programming

Low-level programming

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 10 / 35



Overview

1 Introducing to Binary Code Analysis

2 Why Is Binary Analysis Special?

3 Low-level Programs Formal Model

4 Control-flow Recovery

5 Current and Future Trends

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 11 / 35



Why Another Execution Model?

Semantics of low-level programs differ drastically from the usual
models;

Real execution models are optimized a lot which make them
difficult to handle;

A simpler model with the same expressivity make it easier to
understand;

A formalization is necessary to start thinking about proofs;

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 12 / 35



Memory Model

Memory
D⊆ N: A discrete numerical domain;
A = D: Memory addresses (part of the numerical domain);
M : A 7→ D: The set of all possible valuations of the memory;
Notation: m ∈M, m(addr) = val .

Partially Initialized Memory
M|A : A 7→ D∪{⊥}: The set of all partial valuations of M, with
A⊆ A the initialized addresses such that ∀a ∈ A\A, m(a) =⊥.
Notation: If m ∈ M|A, then M(m) denotes the set of all the fully
initialized memories that can be spawned with m as generator.

Register(s)
pc ∈ A: The program counter (the only register of the model);

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 13 / 35



Assembly Language
Instructions

I: A (finite) set of instructions;
’load value, addr’: Load the evaluation of ’value’ at ’addr’ in memory;
’branch cond, addr’: Jump to ’addr’ if the expression ’cond’ is zero;
’halt’: Stop program execution;

Expressions
Expressions are usual arithmetics (e.g. ’10*(5-7)/3’) with:

[addr]∈ D: Access to the content of the address ’addr’∈ A;
Operational Semantics

I : M×A 7→M×A where i ∈ I, i(m,pc) = (m′,pc′);
Jload value, addrK = ([addr]:=value, pc’:=pc+1)

Jbranch cond, addrK =
([0]:=[0], if cond==0 then pc’:=addr else pc’:=pc+1)

JhaltK = ([0]:=[0], pc’:=pc)

System Calls (optional)
syscall read addr: Get an input (keyboard) and store it into ’addr’;
syscall write value: Write ’value’ on the output (screen).
E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 14 / 35



Low-level Programs

Decoding Instructions
I: A set of instructions as described before;
δ : D 7→ I: A decoding function to map a value to an instruction.

Low-Level Program
A program P = (minit ,pc0, δ), is given by:

An initial, partially initialized, memory minit ∈ M|A (with A⊆ A),
An initial program counter pc0 ∈ A,
And a decoding function δ : D 7→ I.

Valid Run
(m0,pc0)

i0(m0,pc0)
−−−−−−→ (m1,pc1)

i1(m1,pc1)
−−−−−−→ . . .

ik (mk ,pck )
−−−−−−−→ (mk+1,pck+1) . . .

Where m0∈M(minit) and ∀p≥0, ip =δ(mp,pcp) and (mp+1,pcp+1)= ip(mp,pcp).

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 15 / 35



A First Full Example

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed.

Addr Initial Content
0x0 ⊥

;; counter (var)

0x1 ⊥

;; accumulator (var)

0x2 syscall read 0

;; get initial value

0x3 load [0], 1

;; initialize accumulator

0x4 load [0]*[1], 1

;; compute next step

0x5 load [0]-1, 0

;; decrement counter

0x6 branch [0]!=0, 4

;; loop if counter is not zero

0x7 branch [1]!=0, 9

;; check if result is not zero

0x8 load 1, [1]

;; if result was zero, set result to 1

0x9 syscall write [1]

;; output result

0xa halt

;; halt program

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 16 / 35



A First Full Example

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed.

Addr Initial Content
0x0 ⊥ ;; counter (var)
0x1 ⊥ ;; accumulator (var)
0x2 syscall read 0

;; get initial value

0x3 load [0], 1

;; initialize accumulator

0x4 load [0]*[1], 1

;; compute next step

0x5 load [0]-1, 0

;; decrement counter

0x6 branch [0]!=0, 4

;; loop if counter is not zero

0x7 branch [1]!=0, 9

;; check if result is not zero

0x8 load 1, [1]

;; if result was zero, set result to 1

0x9 syscall write [1]

;; output result

0xa halt

;; halt program

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 16 / 35



A First Full Example

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed.

Addr Initial Content
0x0 ⊥ ;; counter (var)
0x1 ⊥ ;; accumulator (var)
0x2 syscall read 0 ;; get initial value
0x3 load [0], 1

;; initialize accumulator

0x4 load [0]*[1], 1

;; compute next step

0x5 load [0]-1, 0

;; decrement counter

0x6 branch [0]!=0, 4

;; loop if counter is not zero

0x7 branch [1]!=0, 9

;; check if result is not zero

0x8 load 1, [1]

;; if result was zero, set result to 1

0x9 syscall write [1]

;; output result

0xa halt

;; halt program

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 16 / 35



A First Full Example

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed.

Addr Initial Content
0x0 ⊥ ;; counter (var)
0x1 ⊥ ;; accumulator (var)
0x2 syscall read 0 ;; get initial value
0x3 load [0], 1 ;; initialize accumulator
0x4 load [0]*[1], 1

;; compute next step

0x5 load [0]-1, 0

;; decrement counter

0x6 branch [0]!=0, 4

;; loop if counter is not zero

0x7 branch [1]!=0, 9

;; check if result is not zero

0x8 load 1, [1]

;; if result was zero, set result to 1

0x9 syscall write [1]

;; output result

0xa halt

;; halt program

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 16 / 35



A First Full Example

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed.

Addr Initial Content
0x0 ⊥ ;; counter (var)
0x1 ⊥ ;; accumulator (var)
0x2 syscall read 0 ;; get initial value
0x3 load [0], 1 ;; initialize accumulator
0x4 load [0]*[1], 1 ;; compute next step
0x5 load [0]-1, 0

;; decrement counter

0x6 branch [0]!=0, 4

;; loop if counter is not zero

0x7 branch [1]!=0, 9

;; check if result is not zero

0x8 load 1, [1]

;; if result was zero, set result to 1

0x9 syscall write [1]

;; output result

0xa halt

;; halt program

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 16 / 35



A First Full Example

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed.

Addr Initial Content
0x0 ⊥ ;; counter (var)
0x1 ⊥ ;; accumulator (var)
0x2 syscall read 0 ;; get initial value
0x3 load [0], 1 ;; initialize accumulator
0x4 load [0]*[1], 1 ;; compute next step
0x5 load [0]-1, 0 ;; decrement counter
0x6 branch [0]!=0, 4

;; loop if counter is not zero

0x7 branch [1]!=0, 9

;; check if result is not zero

0x8 load 1, [1]

;; if result was zero, set result to 1

0x9 syscall write [1]

;; output result

0xa halt

;; halt program

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 16 / 35



A First Full Example

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed.

Addr Initial Content
0x0 ⊥ ;; counter (var)
0x1 ⊥ ;; accumulator (var)
0x2 syscall read 0 ;; get initial value
0x3 load [0], 1 ;; initialize accumulator
0x4 load [0]*[1], 1 ;; compute next step
0x5 load [0]-1, 0 ;; decrement counter
0x6 branch [0]!=0, 4 ;; loop if counter is not zero
0x7 branch [1]!=0, 9

;; check if result is not zero

0x8 load 1, [1]

;; if result was zero, set result to 1

0x9 syscall write [1]

;; output result

0xa halt

;; halt program

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 16 / 35



A First Full Example

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed.

Addr Initial Content
0x0 ⊥ ;; counter (var)
0x1 ⊥ ;; accumulator (var)
0x2 syscall read 0 ;; get initial value
0x3 load [0], 1 ;; initialize accumulator
0x4 load [0]*[1], 1 ;; compute next step
0x5 load [0]-1, 0 ;; decrement counter
0x6 branch [0]!=0, 4 ;; loop if counter is not zero
0x7 branch [1]!=0, 9 ;; check if result is not zero
0x8 load 1, [1] ;; if result was zero, set result to 1
0x9 syscall write [1]

;; output result

0xa halt

;; halt program

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 16 / 35



A First Full Example

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed.

Addr Initial Content
0x0 ⊥ ;; counter (var)
0x1 ⊥ ;; accumulator (var)
0x2 syscall read 0 ;; get initial value
0x3 load [0], 1 ;; initialize accumulator
0x4 load [0]*[1], 1 ;; compute next step
0x5 load [0]-1, 0 ;; decrement counter
0x6 branch [0]!=0, 4 ;; loop if counter is not zero
0x7 branch [1]!=0, 9 ;; check if result is not zero
0x8 load 1, [1] ;; if result was zero, set result to 1
0x9 syscall write [1] ;; output result
0xa halt

;; halt program

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 16 / 35



A First Full Example

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed.

Addr Initial Content
0x0 ⊥ ;; counter (var)
0x1 ⊥ ;; accumulator (var)
0x2 syscall read 0 ;; get initial value
0x3 load [0], 1 ;; initialize accumulator
0x4 load [0]*[1], 1 ;; compute next step
0x5 load [0]-1, 0 ;; decrement counter
0x6 branch [0]!=0, 4 ;; loop if counter is not zero
0x7 branch [1]!=0, 9 ;; check if result is not zero
0x8 load 1, [1] ;; if result was zero, set result to 1
0x9 syscall write [1] ;; output result
0xa halt ;; halt program

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 16 / 35



Dynamic Jumps

m0 as below;
pc0 = 1;
δ: We already applied it to the memory when needed.

Addr Initial Content
0x0 ⊥

;; input (var)

0x1 syscall read 0

;; get initial value

0x2 branch 0<[1]<4, [1]*2+2

;; dynamic jump

0x3 branch 0==0, 1

;; loop on wrong choice

0x4 syscall write 10

;; output 10 on 1

0x5 halt
0x6 syscall write 42

;; output 42 on 2

0x7 halt
0x8 syscall write 1001

;; output 1001 on 3

0x9 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 17 / 35



Dynamic Jumps

m0 as below;
pc0 = 1;
δ: We already applied it to the memory when needed.

Addr Initial Content
0x0 ⊥ ;; input (var)
0x1 syscall read 0

;; get initial value

0x2 branch 0<[1]<4, [1]*2+2

;; dynamic jump

0x3 branch 0==0, 1

;; loop on wrong choice

0x4 syscall write 10

;; output 10 on 1

0x5 halt
0x6 syscall write 42

;; output 42 on 2

0x7 halt
0x8 syscall write 1001

;; output 1001 on 3

0x9 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 17 / 35



Dynamic Jumps

m0 as below;
pc0 = 1;
δ: We already applied it to the memory when needed.

Addr Initial Content
0x0 ⊥ ;; input (var)
0x1 syscall read 0 ;; get initial value
0x2 branch 0<[1]<4, [1]*2+2

;; dynamic jump

0x3 branch 0==0, 1

;; loop on wrong choice

0x4 syscall write 10

;; output 10 on 1

0x5 halt
0x6 syscall write 42

;; output 42 on 2

0x7 halt
0x8 syscall write 1001

;; output 1001 on 3

0x9 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 17 / 35



Dynamic Jumps

m0 as below;
pc0 = 1;
δ: We already applied it to the memory when needed.

Addr Initial Content
0x0 ⊥ ;; input (var)
0x1 syscall read 0 ;; get initial value
0x2 branch 0<[1]<4, [1]*2+2 ;; dynamic jump
0x3 branch 0==0, 1

;; loop on wrong choice

0x4 syscall write 10

;; output 10 on 1

0x5 halt
0x6 syscall write 42

;; output 42 on 2

0x7 halt
0x8 syscall write 1001

;; output 1001 on 3

0x9 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 17 / 35



Dynamic Jumps

m0 as below;
pc0 = 1;
δ: We already applied it to the memory when needed.

Addr Initial Content
0x0 ⊥ ;; input (var)
0x1 syscall read 0 ;; get initial value
0x2 branch 0<[1]<4, [1]*2+2 ;; dynamic jump
0x3 branch 0==0, 1 ;; loop on wrong choice
0x4 syscall write 10

;; output 10 on 1

0x5 halt
0x6 syscall write 42

;; output 42 on 2

0x7 halt
0x8 syscall write 1001

;; output 1001 on 3

0x9 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 17 / 35



Dynamic Jumps

m0 as below;
pc0 = 1;
δ: We already applied it to the memory when needed.

Addr Initial Content
0x0 ⊥ ;; input (var)
0x1 syscall read 0 ;; get initial value
0x2 branch 0<[1]<4, [1]*2+2 ;; dynamic jump
0x3 branch 0==0, 1 ;; loop on wrong choice
0x4 syscall write 10 ;; output 10 on 1
0x5 halt
0x6 syscall write 42 ;; output 42 on 2
0x7 halt
0x8 syscall write 1001 ;; output 1001 on 3
0x9 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 17 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 ⊥

;; input (var)

0x1 0

;; initialized data
⇒

0x2 syscall read 0

;; get initial value
⇒

0x3 load [1], 6

;; rewrite code ahead
⇒

0x4 load [0], 1

;; overwrite [1] with [0]
⇒

0x5 load [0]-1, [0]

;; decrement [0]
⇒

0x6 load [1], 0

⇒

0x7 branch 0==0, 3

;; jump to 3
⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 ⊥ ;; input (var)
0x1 0 ;; initialized data

⇒

0x2 syscall read 0

;; get initial value
⇒

0x3 load [1], 6

;; rewrite code ahead
⇒

0x4 load [0], 1

;; overwrite [1] with [0]
⇒

0x5 load [0]-1, [0]

;; decrement [0]
⇒

0x6 load [1], 0

⇒

0x7 branch 0==0, 3

;; jump to 3
⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 ⊥ ;; input (var)
0x1 0 ;; initialized data

⇒ 0x2 syscall read 0 ;; get initial value

⇒

0x3 load [1], 6

;; rewrite code ahead
⇒

0x4 load [0], 1

;; overwrite [1] with [0]
⇒

0x5 load [0]-1, [0]

;; decrement [0]
⇒

0x6 load [1], 0

⇒

0x7 branch 0==0, 3

;; jump to 3
⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 n ;; input (var)
0x1 0 ;; initialized data

⇒ 0x2 syscall read 0 ;; get initial value

⇒

0x3 load [1], 6

;; rewrite code ahead
⇒

0x4 load [0], 1

;; overwrite [1] with [0]
⇒

0x5 load [0]-1, [0]

;; decrement [0]
⇒

0x6 load [1], 0

⇒

0x7 branch 0==0, 3

;; jump to 3
⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 n ;; input (var)
0x1 0 ;; initialized data

⇒

0x2 syscall read 0 ;; get initial value
⇒ 0x3 load [1], 6 ;; rewrite code ahead

⇒

0x4 load [0], 1

;; overwrite [1] with [0]
⇒

0x5 load [0]-1, [0]

;; decrement [0]
⇒

0x6 load [1], 0

⇒

0x7 branch 0==0, 3

;; jump to 3
⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 n ;; input (var)
0x1 0 ;; initialized data

⇒

0x2 syscall read 0 ;; get initial value
⇒ 0x3 load [1], 6 ;; rewrite code ahead

⇒

0x4 load [0], 1

;; overwrite [1] with [0]
⇒

0x5 load [0]-1, [0]

;; decrement [0]
⇒

0x6 branch [0]!=0, 4

⇒

0x7 branch 0==0, 3

;; jump to 3
⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 n ;; input (var)
0x1 0 ;; initialized data

⇒

0x2 syscall read 0 ;; get initial value

⇒

0x3 load [1], 6 ;; rewrite code ahead
⇒ 0x4 load [0], 1 ;; overwrite [1] with [0]

⇒

0x5 load [0]-1, [0]

;; decrement [0]
⇒

0x6 branch [0]!=0, 4

⇒

0x7 branch 0==0, 3

;; jump to 3
⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 n ;; input (var)
0x1 n ;; initialized data

⇒

0x2 syscall read 0 ;; get initial value

⇒

0x3 load [1], 6 ;; rewrite code ahead
⇒ 0x4 load [0], 1 ;; overwrite [1] with [0]

⇒

0x5 load [0]-1, [0]

;; decrement [0]
⇒

0x6 branch [0]!=0, 4

⇒

0x7 branch 0==0, 3

;; jump to 3
⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 n ;; input (var)
0x1 n ;; initialized data

⇒

0x2 syscall read 0 ;; get initial value

⇒

0x3 load [1], 6 ;; rewrite code ahead

⇒

0x4 load [0], 1 ;; overwrite [1] with [0]
⇒ 0x5 load [0]-1, [0] ;; decrement [0]

⇒

0x6 branch [0]!=0, 4

⇒

0x7 branch 0==0, 3

;; jump to 3
⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 n-1 ;; input (var)
0x1 n ;; initialized data

⇒

0x2 syscall read 0 ;; get initial value

⇒

0x3 load [1], 6 ;; rewrite code ahead

⇒

0x4 load [0], 1 ;; overwrite [1] with [0]
⇒ 0x5 load [0]-1, [0] ;; decrement [0]

⇒

0x6 branch [0]!=0, 4

⇒

0x7 branch 0==0, 3

;; jump to 3
⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 n-1 ;; input (var)
0x1 n ;; initialized data

⇒

0x2 syscall read 0 ;; get initial value

⇒

0x3 load [1], 6 ;; rewrite code ahead

⇒

0x4 load [0], 1 ;; overwrite [1] with [0]

⇒

0x5 load [0]-1, [0] ;; decrement [0]
⇒ 0x6 branch [0]!=0, 4 ;; if not zero loop to 4

⇒

0x7 branch 0==0, 3

;; jump to 3
⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 0 ;; input (var)
0x1 1 ;; initialized data

⇒

0x2 syscall read 0 ;; get initial value

⇒

0x3 load [1], 6 ;; rewrite code ahead

⇒

0x4 load [0], 1 ;; overwrite [1] with [0]

⇒

0x5 load [0]-1, [0] ;; decrement [0]

⇒

0x6 branch [0]!=0, 4 ;; if not zero loop to 4
⇒ 0x7 branch 0==0, 3 ;; jump to 3

⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 0 ;; input (var)
0x1 1 ;; initialized data

⇒

0x2 syscall read 0 ;; get initial value
⇒ 0x3 load [1], 6 ;; rewrite code ahead

⇒

0x4 load [0], 1 ;; overwrite [1] with [0]

⇒

0x5 load [0]-1, [0] ;; decrement [0]

⇒

0x6 branch [0]!=0, 4 ;; if not zero loop to 4

⇒

0x7 branch 0==0, 3 ;; jump to 3

⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 0 ;; input (var)
0x1 1 ;; initialized data

⇒

0x2 syscall read 0 ;; get initial value
⇒ 0x3 load [1], 6 ;; rewrite code ahead

⇒

0x4 load [0], 1 ;; overwrite [1] with [0]

⇒

0x5 load [0]-1, [0] ;; decrement [0]

⇒

0x6 branch 0==0, 8 ;; jump to 8

⇒

0x7 branch 0==0, 3 ;; jump to 3

⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 0 ;; input (var)
0x1 1 ;; initialized data

⇒

0x2 syscall read 0 ;; get initial value

⇒

0x3 load [1], 6 ;; rewrite code ahead
⇒ 0x4 load [0], 1 ;; overwrite [1] with [0]

⇒

0x5 load [0]-1, [0] ;; decrement [0]

⇒

0x6 branch 0==0, 8 ;; jump to 8

⇒

0x7 branch 0==0, 3 ;; jump to 3

⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 0 ;; input (var)
0x1 0 ;; initialized data

⇒

0x2 syscall read 0 ;; get initial value

⇒

0x3 load [1], 6 ;; rewrite code ahead
⇒ 0x4 load [0], 1 ;; overwrite [1] with [0]

⇒

0x5 load [0]-1, [0] ;; decrement [0]

⇒

0x6 branch 0==0, 8 ;; jump to 8

⇒

0x7 branch 0==0, 3 ;; jump to 3

⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 0 ;; input (var)
0x1 0 ;; initialized data

⇒

0x2 syscall read 0 ;; get initial value

⇒

0x3 load [1], 6 ;; rewrite code ahead

⇒

0x4 load [0], 1 ;; overwrite [1] with [0]
⇒ 0x5 load [0]-1, [0] ;; decrement [0]

⇒

0x6 branch 0==0, 8 ;; jump to 8

⇒

0x7 branch 0==0, 3 ;; jump to 3

⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 -1 ;; input (var)
0x1 0 ;; initialized data

⇒

0x2 syscall read 0 ;; get initial value

⇒

0x3 load [1], 6 ;; rewrite code ahead

⇒

0x4 load [0], 1 ;; overwrite [1] with [0]
⇒ 0x5 load [0]-1, [0] ;; decrement [0]

⇒

0x6 branch 0==0, 8 ;; jump to 8

⇒

0x7 branch 0==0, 3 ;; jump to 3

⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 -1 ;; input (var)
0x1 0 ;; initialized data

⇒

0x2 syscall read 0 ;; get initial value

⇒

0x3 load [1], 6 ;; rewrite code ahead

⇒

0x4 load [0], 1 ;; overwrite [1] with [0]

⇒

0x5 load [0]-1, [0] ;; decrement [0]
⇒ 0x6 branch 0==0, 8 ;; jump to 8

⇒

0x7 branch 0==0, 3 ;; jump to 3

⇒

0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Self-modifying code

m0 as below;
pc0 = 2;
δ: We already applied it to the memory when needed but here are the rest:

0 7→ branch [0]!=0, 4
1 7→ branch 0==0, 8

Addr Initial Content
0x0 -1 ;; input (var)
0x1 0 ;; initialized data

⇒

0x2 syscall read 0 ;; get initial value

⇒

0x3 load [1], 6 ;; rewrite code ahead

⇒

0x4 load [0], 1 ;; overwrite [1] with [0]

⇒

0x5 load [0]-1, [0] ;; decrement [0]

⇒

0x6 branch 0==0, 8 ;; jump to 8

⇒

0x7 branch 0==0, 3 ;; jump to 3
⇒ 0x8 halt

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 18 / 35



Variable Size Instructions

A few real-world assembly languages have variable size instructions. This property
is sometimes used to hide part of a program with a technique called “instruction

overlapping”. This property can be easily added to our model as follow.

Instructions
I: A (finite) set of instructions;
’load value, addr’: Load the evaluation of ’value’ at ’addr’ in memory
Encoded in two memory cells, first for ’load value’ and second for ’address’;
’branch cond, addr’: Jump to ’addr’ if the expression ’cond’ is zero
Encoded in two memory cells, first for ’branch cond’ and second for ’address’;
’halt’: Stop program execution. Encoded in one memory cell as before;

Operational Semantics
I : M×A 7→M×A where i ∈ I, i(m,pc) = (m′,pc′);
Jload value, addrK = ([addr]:=value, pc’:=pc+2)

Jbranch cond, addrK =
([0]:=[0], if cond==0 then pc’:=addr else pc’:=pc+2)

JhaltK = ([0]:=[0], pc’:=pc)

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 19 / 35



Overview

1 Introducing to Binary Code Analysis

2 Why Is Binary Analysis Special?

3 Low-level Programs Formal Model

4 Control-flow Recovery
Types of Control-Flow Recovery
Syntax-based Recovery
Semantics-based Recovery
Control-Flow Recovery: Summary

5 Current and Future Trends

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 20 / 35



Control-Flow Recovery

Control-flow recovery is prior to any other work because it aims at
recovering the semantics of the program.

The point is to gather all the possible execution paths of the
binary program for all possible inputs.

Because of dynamic jumps and self-modifying code, the gathering
of all the possible runs requires to perform data-analysis on a
partial semantics of the program.

Most of the analysis techniques work only with the complete
semantics of the program (Chicken and Egg Problem).

Thus, we need to come with new techniques. . .

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 21 / 35



Types of Control-Flow Recovery

Correctness
Exact: The disassembler outputs the exact control-flow that covers all the
possible execution paths of the input program.

Under-approximation: The disassembler outputs a subset of all the
possible execution paths of the input program.

Over-approximation: The disassembler outputs a set of execution paths
that enclose the set of all possible ones.

Incorrect: The disassembler outputs a set that may miss some execution
paths and add some extra as well (we cannot say anything from this output).

Techniques
Syntax-based Recovery

Linear Sweep
Recursive Traversal

Semantics-based Recovery
Concrete Execution
Symbolic Execution

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 22 / 35



Undecidability of the General Problem

Theorem
Recovering the control-flow of a binary program is undecidable (for the general case).

Sketch of Proof
1 Lets, first, assume that the model we presented is equivalent to a Turing machine.

2 Recovering all the run would requires to collect all the possible values of pc.

3 Because of self-modifying code, the values pointed by the pc must also be
recovered (which means that we need to track strictly more than one variable).

4 Thus, we can reduce any accessibility problem for a given program to a control-flow
recovery problem by adding to the original program a conditional jump to an error
state. And try to see if this extra program state is in the program control-flow.

5 Finally, as the accessibility problem is undecidable, the control-flow recovery
problem is also undecidable for the general case.

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 23 / 35



Syntax-based: Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the program counter to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is it adding and missing execution paths?
Lets disassemble this piece of binary code:
0804846 c: eb04 jmp 0 x804846e +4
0804846 e: efbeadde dd 0 xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa

0804846 c: eb04 jmp 0 x804846e +4
0804846 e: ef out dx , eax
0804846 f: beaddea16e mov esi , 0 x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83 c00a add eax , 0xa

Yes, it is adding and missing execution paths!

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 24 / 35



Syntax-based: Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the program counter to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is it adding and missing execution paths?

Lets disassemble this piece of binary code:
0804846 c: eb04 jmp 0 x804846e +4
0804846 e: efbeadde dd 0 xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa

0804846 c: eb04 jmp 0 x804846e +4
0804846 e: ef out dx , eax
0804846 f: beaddea16e mov esi , 0 x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83 c00a add eax , 0xa

Yes, it is adding and missing execution paths!

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 24 / 35



Syntax-based: Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the program counter to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is it adding and missing execution paths?
Lets disassemble this piece of binary code:
0804846 c: eb04 jmp 0 x804846e +4
0804846 e: efbeadde dd 0 xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa

0804846 c: eb04 jmp 0 x804846e +4
0804846 e: ef out dx , eax
0804846 f: beaddea16e mov esi , 0 x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83 c00a add eax , 0xa

Yes, it is adding and missing execution paths!

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 24 / 35



Syntax-based: Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the program counter to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is it adding and missing execution paths?
Lets disassemble this piece of binary code:
0804846 c: eb04 jmp 0 x804846e +4
0804846 e: efbeadde dd 0 xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa

0804846 c: eb04 jmp 0 x804846e +4

0804846 e: ef out dx , eax
0804846 f: beaddea16e mov esi , 0 x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83 c00a add eax , 0xa

Yes, it is adding and missing execution paths!

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 24 / 35



Syntax-based: Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the program counter to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is it adding and missing execution paths?
Lets disassemble this piece of binary code:
0804846 c: eb04 jmp 0 x804846e +4
0804846 e: efbeadde dd 0 xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa

0804846 c: eb04 jmp 0 x804846e +4
0804846 e: ef out dx , eax

0804846 f: beaddea16e mov esi , 0 x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83 c00a add eax , 0xa

Yes, it is adding and missing execution paths!

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 24 / 35



Syntax-based: Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the program counter to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is it adding and missing execution paths?
Lets disassemble this piece of binary code:
0804846 c: eb04 jmp 0 x804846e +4
0804846 e: efbeadde dd 0 xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa

0804846 c: eb04 jmp 0 x804846e +4
0804846 e: ef out dx , eax
0804846 f: beaddea16e mov esi , 0 x6ea1dead

08048474: 840408 test [eax+ecx], al
08048477: 83 c00a add eax , 0xa

Yes, it is adding and missing execution paths!

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 24 / 35



Syntax-based: Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the program counter to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is it adding and missing execution paths?
Lets disassemble this piece of binary code:
0804846 c: eb04 jmp 0 x804846e +4
0804846 e: efbeadde dd 0 xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa

0804846 c: eb04 jmp 0 x804846e +4
0804846 e: ef out dx , eax
0804846 f: beaddea16e mov esi , 0 x6ea1dead
08048474: 840408 test [eax+ecx], al

08048477: 83 c00a add eax , 0xa

Yes, it is adding and missing execution paths!

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 24 / 35



Syntax-based: Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the program counter to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is it adding and missing execution paths?
Lets disassemble this piece of binary code:
0804846 c: eb04 jmp 0 x804846e +4
0804846 e: efbeadde dd 0 xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa

0804846 c: eb04 jmp 0 x804846e +4
0804846 e: ef out dx , eax
0804846 f: beaddea16e mov esi , 0 x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83 c00a add eax , 0xa

Yes, it is adding and missing execution paths!

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 24 / 35



Syntax-based: Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the program counter to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is it adding and missing execution paths?
Lets disassemble this piece of binary code:
0804846 c: eb04 jmp 0 x804846e +4
0804846 e: efbeadde dd 0 xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa

0804846 c: eb04 jmp 0 x804846e +4
0804846 e: ef out dx , eax
0804846 f: beaddea16e mov esi , 0 x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83 c00a add eax , 0xa

Yes, it is adding and missing execution paths!

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 24 / 35



Syntax-based: Linear Sweep
Linear Sweep

1 Decode the first instruction at the entrypoint and store it;
2 Move (syntactically) the program counter to the next instruction;
3 Decode the instruction and go to 2 if you are not out of the memory.

Is it adding and missing execution paths?
Lets disassemble this piece of binary code:
0804846 c: eb04 jmp 0 x804846e +4
0804846 e: efbeadde dd 0 xdeadbeef # Data hidden among instructions
08048472: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa

0804846 c: eb04 jmp 0 x804846e +4
0804846 e: ef out dx , eax
0804846 f: beaddea16e mov esi , 0 x6ea1dead
08048474: 840408 test [eax+ecx], al
08048477: 83 c00a add eax , 0xa

Yes, it is adding and missing execution paths!

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 24 / 35



Syntax-based: Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

What does it add to linear sweep?
Lets disassemble this piece of binary code:
0804846 c: e882feffff call 0 x08048c00 08048 c00: 83 c00010 add eax , 0 x1000
08048471: a16e840408 mov eax , [0 x804846e ] 08048 c03: c3 ret
08048476: 83 c00a add eax , 0xa
...

0804846 c: e882feffff call 0 x08048c00
08048 c00: 83 c00010 add eax , 0 x1000
08048 c03: c3 ret
08048471: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa ...

But, it is based on linear sweep, so. . .

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 25 / 35



Syntax-based: Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

What does it add to linear sweep?

Lets disassemble this piece of binary code:
0804846 c: e882feffff call 0 x08048c00 08048 c00: 83 c00010 add eax , 0 x1000
08048471: a16e840408 mov eax , [0 x804846e ] 08048 c03: c3 ret
08048476: 83 c00a add eax , 0xa
...

0804846 c: e882feffff call 0 x08048c00
08048 c00: 83 c00010 add eax , 0 x1000
08048 c03: c3 ret
08048471: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa ...

But, it is based on linear sweep, so. . .

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 25 / 35



Syntax-based: Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

What does it add to linear sweep?
Lets disassemble this piece of binary code:
0804846 c: e882feffff call 0 x08048c00 08048 c00: 83 c00010 add eax , 0 x1000
08048471: a16e840408 mov eax , [0 x804846e ] 08048 c03: c3 ret
08048476: 83 c00a add eax , 0xa
...

0804846 c: e882feffff call 0 x08048c00
08048 c00: 83 c00010 add eax , 0 x1000
08048 c03: c3 ret
08048471: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa ...

But, it is based on linear sweep, so. . .

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 25 / 35



Syntax-based: Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

What does it add to linear sweep?
Lets disassemble this piece of binary code:
0804846 c: e882feffff call 0 x08048c00 08048 c00: 83 c00010 add eax , 0 x1000
08048471: a16e840408 mov eax , [0 x804846e ] 08048 c03: c3 ret
08048476: 83 c00a add eax , 0xa
...

0804846 c: e882feffff call 0 x08048c00

08048 c00: 83 c00010 add eax , 0 x1000
08048 c03: c3 ret
08048471: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa ...

But, it is based on linear sweep, so. . .

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 25 / 35



Syntax-based: Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

What does it add to linear sweep?
Lets disassemble this piece of binary code:
0804846 c: e882feffff call 0 x08048c00 08048 c00: 83 c00010 add eax , 0 x1000
08048471: a16e840408 mov eax , [0 x804846e ] 08048 c03: c3 ret
08048476: 83 c00a add eax , 0xa
...

0804846 c: e882feffff call 0 x08048c00
08048 c00: 83 c00010 add eax , 0 x1000

08048 c03: c3 ret
08048471: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa ...

But, it is based on linear sweep, so. . .

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 25 / 35



Syntax-based: Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

What does it add to linear sweep?
Lets disassemble this piece of binary code:
0804846 c: e882feffff call 0 x08048c00 08048 c00: 83 c00010 add eax , 0 x1000
08048471: a16e840408 mov eax , [0 x804846e ] 08048 c03: c3 ret
08048476: 83 c00a add eax , 0xa
...

0804846 c: e882feffff call 0 x08048c00
08048 c00: 83 c00010 add eax , 0 x1000
08048 c03: c3 ret

08048471: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa ...

But, it is based on linear sweep, so. . .

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 25 / 35



Syntax-based: Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

What does it add to linear sweep?
Lets disassemble this piece of binary code:
0804846 c: e882feffff call 0 x08048c00 08048 c00: 83 c00010 add eax , 0 x1000
08048471: a16e840408 mov eax , [0 x804846e ] 08048 c03: c3 ret
08048476: 83 c00a add eax , 0xa
...

0804846 c: e882feffff call 0 x08048c00
08048 c00: 83 c00010 add eax , 0 x1000
08048 c03: c3 ret
08048471: a16e840408 mov eax , [0 x804846e ]

08048477: 83 c00a add eax , 0xa ...

But, it is based on linear sweep, so. . .

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 25 / 35



Syntax-based: Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

What does it add to linear sweep?
Lets disassemble this piece of binary code:
0804846 c: e882feffff call 0 x08048c00 08048 c00: 83 c00010 add eax , 0 x1000
08048471: a16e840408 mov eax , [0 x804846e ] 08048 c03: c3 ret
08048476: 83 c00a add eax , 0xa
...

0804846 c: e882feffff call 0 x08048c00
08048 c00: 83 c00010 add eax , 0 x1000
08048 c03: c3 ret
08048471: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa

...

But, it is based on linear sweep, so. . .

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 25 / 35



Syntax-based: Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

What does it add to linear sweep?
Lets disassemble this piece of binary code:
0804846 c: e882feffff call 0 x08048c00 08048 c00: 83 c00010 add eax , 0 x1000
08048471: a16e840408 mov eax , [0 x804846e ] 08048 c03: c3 ret
08048476: 83 c00a add eax , 0xa
...

0804846 c: e882feffff call 0 x08048c00
08048 c00: 83 c00010 add eax , 0 x1000
08048 c03: c3 ret
08048471: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa ...

But, it is based on linear sweep, so. . .

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 25 / 35



Syntax-based: Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

What does it add to linear sweep?
Lets disassemble this piece of binary code:
0804846 c: e882feffff call 0 x08048c00 08048 c00: 83 c00010 add eax , 0 x1000
08048471: a16e840408 mov eax , [0 x804846e ] 08048 c03: c3 ret
08048476: 83 c00a add eax , 0xa
...

0804846 c: e882feffff call 0 x08048c00
08048 c00: 83 c00010 add eax , 0 x1000
08048 c03: c3 ret
08048471: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa ...

But, it is based on linear sweep, so. . .

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 25 / 35



Syntax-based: Recursive Traversal
Introduce a partial support of one type of dynamic jump (call/ret)

with almost no semantics support.

Recursive Traversal
1 Do linear sweep until encountering a ‘call’ or a ‘ret’;
2 If this is a ‘call’, stack its address, jump to it and go to 1;
3 If this is a ‘ret’, pop the last address from the stack, jump to it and go to 1.

What does it add to linear sweep?
Lets disassemble this piece of binary code:
0804846 c: e882feffff call 0 x08048c00 08048 c00: 83 c00010 add eax , 0 x1000
08048471: a16e840408 mov eax , [0 x804846e ] 08048 c03: c3 ret
08048476: 83 c00a add eax , 0xa
...

0804846 c: e882feffff call 0 x08048c00
08048 c00: 83 c00010 add eax , 0 x1000
08048 c03: c3 ret
08048471: a16e840408 mov eax , [0 x804846e ]
08048477: 83 c00a add eax , 0xa ...

But, it is based on linear sweep, so. . .

Incorrect

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 25 / 35



About Syntax-Based Disassemblers

What can we deduce from these examples?
Having partial knowledge of the semantics, will always lead to miss
some behaviours and produce an incorrect control-flow.

To be correct, a disassembler always need to know
about the semantics of all the instructions!

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 26 / 35



About Syntax-Based Disassemblers

What can we deduce from these examples?
Having partial knowledge of the semantics, will always lead to miss
some behaviours and produce an incorrect control-flow.

To be correct, a disassembler always need to know
about the semantics of all the instructions!

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 26 / 35



Semantics-based: Concrete Execution

Concrete Execution
Given some chosen inputs, run the program several times and collect the traces.
The collection of all the traces will give you the semantics of the program.

Efficient and simple to settle down (by using Pin, for example).
Quite fast for a run, even if you need to store all the traces.
Can be automatized with random inputs (fuzzing).

But!

There is, almost, no hope to reach full coverage of the program.
Random input makes it very difficult to control the time needed
to reach a good coverage.

Under-approximation

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 27 / 35



Semantics-based: Concrete Execution

Concrete Execution
Given some chosen inputs, run the program several times and collect the traces.
The collection of all the traces will give you the semantics of the program.

Efficient and simple to settle down (by using Pin, for example).
Quite fast for a run, even if you need to store all the traces.
Can be automatized with random inputs (fuzzing).

But!

There is, almost, no hope to reach full coverage of the program.
Random input makes it very difficult to control the time needed
to reach a good coverage.

Under-approximation

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 27 / 35



Symbolic Execution

1 int f(int x, int y)
2 {
3 int z;
4 z = y;
5

6 if (x == y)
7 if (z == x + 10)
8 return 1;
9

10 return 0;
11 }

input(x)
input(y)
new(z)

z=y

return 1 return 0

x==y

x!=y

z==x+10 z!=x+10

line 4: (x = y)
line 8: (x = y)∧ (y = x +10) (UNSAT)
line 10 (path1): (x 6= y)
line 10 (path2): (x = y)∧ (y 6= x +10)

Algorithm (James King, 1976)

Explore the program and ask the
SMT-solver at each program
point if the path is feasible.

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 28 / 35



Symbolic Execution

1 int f(int x, int y)
2 {
3 int z;
4 z = y;
5

6 if (x == y)
7 if (z == x + 10)
8 return 1;
9

10 return 0;
11 }

input(x)
input(y)
new(z)

z=y

return 1 return 0

x==y

x!=y

z==x+10 z!=x+10

line 4: (x = y)
line 8: (x = y)∧ (y = x +10) (UNSAT)
line 10 (path1): (x 6= y)
line 10 (path2): (x = y)∧ (y 6= x +10)

Algorithm (James King, 1976)

Explore the program and ask the
SMT-solver at each program
point if the path is feasible.

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 28 / 35



Directed Automated Concrete Execution

Directed Automated Concrete Execution
1 First run the program on random inputs and get a trace;
2 Get each possible branching inside the previous trace and ask an SMT-solver

to solve it.
3 If the SMT-solver fails, generate a random input to try to reach the

untouched branches.

Original idea (2005):
DART (Directed Automated Random Testing) by Patrice Godefroid;
First applied to binary analysis (2008):
Inside the OSMOSE software by CEA List.

Under-approximation

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 29 / 35



Directed Automated Concrete Execution

Directed Automated Concrete Execution
1 First run the program on random inputs and get a trace;
2 Get each possible branching inside the previous trace and ask an SMT-solver

to solve it.
3 If the SMT-solver fails, generate a random input to try to reach the

untouched branches.

Original idea (2005):
DART (Directed Automated Random Testing) by Patrice Godefroid;
First applied to binary analysis (2008):
Inside the OSMOSE software by CEA List.

Under-approximation

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 29 / 35



Full Symbolic Execution on Binary Code
Algorithm

1 Start at entry point;

2 Symbolically execute the current instruction;

3 If a dynamic jump or a test is encountered, run the SMT-solver on the
conjunction of all previous paths and list possible outputs;

4 If the SMT-solver output an answer, follow the satisfiable paths and go to 2;

5 If the SMT-solver cannot answer, stop here.

A few limitations and challenges:
Tool must be aware of the semantics of all the instructions;
Context of the Operating System must be simulated;
Under-approximation (efficiency depends upon the cleverness of SMT-solver);
Loops are unfolded up to a certain limit to enforce termination;
Detection of local context and scope helps to keep the formula small.

Under-approximation

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 30 / 35



Full Symbolic Execution on Binary Code
Algorithm

1 Start at entry point;

2 Symbolically execute the current instruction;

3 If a dynamic jump or a test is encountered, run the SMT-solver on the
conjunction of all previous paths and list possible outputs;

4 If the SMT-solver output an answer, follow the satisfiable paths and go to 2;

5 If the SMT-solver cannot answer, stop here.

A few limitations and challenges:
Tool must be aware of the semantics of all the instructions;
Context of the Operating System must be simulated;
Under-approximation (efficiency depends upon the cleverness of SMT-solver);
Loops are unfolded up to a certain limit to enforce termination;
Detection of local context and scope helps to keep the formula small.

Under-approximation

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 30 / 35



Abstract Interpretation-Based Recovery

Using an abstract interpretation framework on the CFG recovery problem is
difficult because of the ‘chicken-and-egg’ problem.

Abstract Interpretation-Based CFG Recovery
In ‘An abstract interpretation-based framework for control flow reconstruction
from binaries’ by Johannes Kinder, Florian Zuleger, and Helmut Veith (2009).

Use a double abstract domain: CFG × Data-flow analysis;
Recovery of the CFG is part of part of the process for reaching the fix-point.
Data-flow analysis help on the way for the fix-point.
The abstract domain of the data-flow analysis is a parameter of the
framework. It can be anything as long as it match usual hypothesis of
abstract domain (Galois connection, monotonicity, . . . )
Possible domains to use: k-sets, (stridded) intervals or Value-Set Analysis.

Over-approximation

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 31 / 35



Abstract Interpretation-Based Recovery

Using an abstract interpretation framework on the CFG recovery problem is
difficult because of the ‘chicken-and-egg’ problem.

Abstract Interpretation-Based CFG Recovery
In ‘An abstract interpretation-based framework for control flow reconstruction
from binaries’ by Johannes Kinder, Florian Zuleger, and Helmut Veith (2009).

Use a double abstract domain: CFG × Data-flow analysis;
Recovery of the CFG is part of part of the process for reaching the fix-point.
Data-flow analysis help on the way for the fix-point.
The abstract domain of the data-flow analysis is a parameter of the
framework. It can be anything as long as it match usual hypothesis of
abstract domain (Galois connection, monotonicity, . . . )
Possible domains to use: k-sets, (stridded) intervals or Value-Set Analysis.

Over-approximation

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 31 / 35



Control-Flow Recovery: Summary

Syntax-based Disassembler Accuracy
Linear Sweep Incorrect

Recursive Traversal Incorrect

All methods are just incorrect in all cases.

Semantics-Based Disassembler Accuracy
Concrete Execution Under-approximation

Directed Automated Concrete Execution Under-approximation
Full Symbolic Execution Under-approximation

Abstract Interpretation Recovery Over-approximation

Symbolic Execution and Directed Automated Concrete Execution are of the
same kind and provide under-approximation. They are useful for reverse-engineering.
Abstract-Interpretation framework are, most of the time, too imprecise.

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 32 / 35



Overview

1 Introducing to Binary Code Analysis

2 Why Is Binary Analysis Special?

3 Low-level Programs Formal Model

4 Control-flow Recovery

5 Current and Future Trends

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 33 / 35



Current and Future Trends

Current Trends
Multiplication of tools and frameworks (reinventing the wheel).

Clear split between academic and industry tools (complexity of
use of academic tools is currently too high).

Still some limitations to automatically recover control-flow of
everyday-life binaries and to scale.

Future Trends
A stable and flexible framework for binary analysis.

Support for the main platforms (Windows, Linux, *BSD, MacOS).

Deal with loops and variable size inputs in a more efficient way.

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 34 / 35



Questions?

E. Fleury (LaBRI, France) Binary Code Analysis: Concepts and Perspectives May 12, 2016 35 / 35


	Introducing to Binary Code Analysis
	Basic Definitions
	Binary Analysis Pipeline
	Practical and Theoretical Challenges

	Why Is Binary Analysis Special?
	Unstructured Programming
	Architectural Model

	Low-level Programs Formal Model
	Control-flow Recovery
	Types of Control-Flow Recovery
	Syntax-based Recovery
	Semantics-based Recovery
	Control-Flow Recovery: Summary

	Current and Future Trends

