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What is Infrastructure Security?

• Someone may steal from it at night!

– So, a night watchman position was created!

• How can the watchman work with no instructions?

– So, a planning department was created!

• How we know the watchman is doing the tasks correctly?

– So, a Quality Control Department was created!

• How are these people going to get paid?

– So, . . .

• How . . .?

– So, . . .
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Infrastructure Security

FPS 2015



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 5

Infrastructure Security

• Infrastructure security is concerned with securing physical

assets so as to

– withstand, and

– rapidly recover

from potential threats that may affect critical resources located

or enclosed within a given bounded region.

• This is a very “broad statement”.
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Diversity of Infrastructure Security

• The diversity of such systems makes potential threats difficult

to grasp and the required rigorous security analysis almost

impossible to pursue.
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Infrastructure Sectors

• Buildings and roads,

• Border systems,

• Economic structures and materials,

• Energy and water supply systems,

• Internet and telecommunication systems.
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What is SCADA?

• Supervisory Control And Data Acquisition (SCADA).

– Large scale computer based industrial control system for

monitoring and controlling industrial facility based processes

• Includes various general buildings, transport systems, heating

and ventilation systems, energy production and consumption.

• SCADA architectures:

– originally primitive in design and conception

– evolving systems; distributed and networked control

augmented with sensor systems based on IoT.

• Network Infrastructure: system concepts and details of system

components, control system for HCI by supervisory station(s),

various types of communication methods.
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SCADAa

aT. Lewis, Critical Infrastructure Protection in Homeland Security: Defend-

ing a Networked Nation, 2006
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General fault tree of possible vulnerabilitiesa

aT. Lewis, Critical Infrastructure Protection in Homeland Security: Defend-

ing a Networked Nation, 2006
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Smart Cities

• Intelligent Operations Center (IOC) for monitoring city services

– water systems,

– public safety,

– transportation,

– hospitals,

– electricity grids, and

– buildings, . . .
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Optimization Problems

FPS 2015



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 13

Optimization Problems

• Why optimization?

– Optimizing the solution of a problem affects reaction time.

• Which optimization problems?

– There are so many!

• Will discuss some which are relevant to security.

– Robot Patrolling.

– Sensor Coverage and Interference.

– Robot Evacuation.

– Domain Protection and Blocking.
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Patrolling
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Motivation

• Patrolling problems in computer games

– Safeguard a given region/domain/territory from enemy

invasions.

Interior

Exterior

• Patrolling problems in robotics

– Patrolling is defined as the perpetual process of walking

around an area in order to protect or supervise it.

Interior

Exterior
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Problem

• k mobile agents are placed on the boundary of a terrain.

• An intruder attempts to penetrate to the interior of the terrain

through a point of the boundary, unknown to and unseen by

the agents.

• The intrusion requires some period of time t.

• The agents are required to protect the boundary, arriving

before the intrusion is complete.
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Setting

• Each agent i has its own predefined maximal speed vi, for

1, 2, . . . , k.

• Agents are deployed on the boundary and programmed to move

around the boundary, without exceeding their maximum speed.

• Question:

for given speeds {v1, v2, . . . , vk} and time τ , does there exist a

deployment of agents which protects the boundary from any

intruder with intrusion time not exceeding τ?

FPS 2015



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 18

Efficiency

• How do you optimize the frequency of visits to the points of

the environment?

• Idleness (or refresh time:) is the time elapsed since the last

visit of the node.

– Idleness can be average, worst-case, experimentally verified,

etc,...

• In a way, given the input parameters you want to know what is

the best effort result you can accomplish!
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Patrolling Strategies

• The graph (or environment) to be patrolled is usually

approximated by a set of subgraphs forming a (skeletonization).

• A skeleton of the environment is defined over which patrolling

is being conducted by the robots.
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Goal

• Minimize maximal idle time for a set of boundary patrolling

robots with distinct maximal speeds (v1, v2, . . . , vk)

• Studied Environments

• Studied Strategies
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Traversal Algorithms

• The position of agent ai at time t ∈ [0,∞) is described by the

continuous function ai(t).

• Hence respecting the maximal speed vi of agent ai means that

for each real value t ≥ 0 and ε > 0, s.t., εvi < 1/2, the following

condition is true

dist(ai(t), ai(t+ ε)) ≤ vi · ε (1)

where dist(ai(t), ai(t+ ε)) denotes the distance along the cycle

between the positions of agent ai at times t and t+ ε.

• A traversal algorithm on the cycle for k mobile agents is a

k-tuple A = (a1(t), a2(t), . . . , ak(t)) which satisfies

Inequality (1), for all i = 1, 2, . . . , k.
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Proportional Partition

• Algorithm 1. Proportional Partition

for k agents with maximal speeds (v1, v2, . . . , vk)

1. Partition the unit segment into k segments, such that the

length of the i-th segment si equals vi
v1+v2+···+vk .

2. For each i, place the i-th agent at any point of segment si.

3. For each i, the i-th agent moves perpetually at maximal

speed, alternately visiting both endpoints of si.

• On unit-length segment or circle, algorithm achieves idle time:

I =
2

v1 + v2 + · · ·+ vk
.
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Cyclic

• Goal: deploy (some of) the robots, all moving around the

circle at the same speed, with equal spacing.

• Algorithm 2. Uniform-Cyclic

for k agents with maximal speeds (v1, v2, . . . , vk) on the circle

• Let v1 ≥ v2 ≥ · · · ≥ vk.

1. Choose r from the range 1..k, so as to maximize: rvr

2. Place agents 1, 2, . . . , r at equal distances of 1/r around the

circle.

3. Agents 1, 2, . . . , r move perpetually counterclockwise around

the circle at speed vr.

4. Agents r + 1, r + 2, . . . , k are not used by the algorithm.
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Conclusion & Further Results

• Faulty robots.

• General Graph & Geometric Environments.

• Distributed vs Centralized Control.

• Many open and very difficult problems.
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Coverage & Interference
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Why Monitoring

• Making Canadian “Ice Wine”.

• The Beautiful game!
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Sensor (Barrier) Coverage

• A geometric domain and n sensors in(out)side the domain.

• Sensors may not cover the (barrier of the) domain!

• Problem: We want to move the sensors so as to cover the

(barrier of the) domain in the sense that every point in the

(barrier of the) domain is within the range of a sensor.

Optimize the movement!
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Sensor Coverage & Interference

• Move the sensors from start positions so as to cover the domain.

• A critical value r specifies the coverage range.

r s
r

r

• A critical value, say s > 0 specifies that sensors be kept a

distance of at least s apart.

– Signals interfere during communication if distance is < s.
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Random Model for Coverage & Interference

• Sensors are thrown randomly and independently with the

uniform distribution in the unit interval.

• X1, X2, . . . , Xn represent sensor positions.

• Coverage Problem in the unit interval [0, 1]:

X1 X2 . . . Xn

• Interference Problem in the half-line [0,+∞):

X1 X2 . . . Xn

. . .

• Xi is the i-th arrival in a Poisson process.

• How much movement is needed to accomplish the task?
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Coverage: Motivation (1/3)

• Throw n sensors of radius r := 1
2n at random in a unit interval.

• To ensure coverage of the interval they must be moved to

anchors ai = i
n + 1

2n , for i = 0, 1, . . . , n− 1.

– This is the worst-case total movement!

– The cost is roughly
√
n.

– Why?

• Do a simulation!
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Coverage: Motivation (2/3)

• Keep increasing the sensor radius.

– The bigger the radius the less the movement! Why?

• For n sensors of radius Θ( lnn
n ), w.h.p. no sensor needs to move!

• Why?

– The probability that no sensor drops inside a subinterval of

length x is (1− x)n.
x

0 1

– However,

(1− x)n =
(

1− xn

n

)n
≈ e−xn =

1

nc
,

for x = c lnn
n , where c > 0.
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Coverage: Prediction (3/3)

• Sensor movement as a function of the sensor range.

√
n

O(1)

Sensor Range r

Movement

lnn
n

1
2n

• The bigger the radius (range) the smaller the movement.
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Interference: Motivation (1/2)

• Throw n sensors at random in a unit interval. We want to

ensure no two sensors are at distance < s.

– To ensure no two sensors are at distance < 1
2n they must all

be placed to anchors ai = i
n + 1

2n , for i = 0, 1, . . . , n− 1.

This is the worst-case total movement! Why?

• Keep decreasing the interference distance s.

– The smaller the interference distance s the less the

movement! Why?

• In general,

Arrival Time of i+ 1st sensor−Arrival Time of ith sensor

are the interarrival times of the Poisson process.
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Interference: Prediction (2/2)

• Sensor movement as a function of the sensor distance.

√
n

O(1)

Movement

0
1
n

Interference Distance s

• The smaller the interference distance the smaller the

movement.
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Critical Regime for Coverage

Sensor Range r Total Displacement E(r)

1
2n Θ(

√
n)

1+ε
2n O (1)

√
n

O(1)

Sensor Range r

Movement

lnn
n

1
2n

Sharp Drop
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Critical Regime for Interference

• On a line there is critical threshold around 1
n ,

1. for s below 1
n − 1

n3/2 , E(s) is a constant O(1),

2. for s ∈
[
1
n − 1

n3/2 ,
1
n + 1

n3/2

]
, E(s) is in Θ(

√
n),

3. for s above 1
n + 1

n3/2 , E(s) is above Θ(
√
n).

• Sensor movement as a function of the sensor distance.

√
n

O(1)

Movement

0
1
n

Interference Distance s

Sharp Drop
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Conclusion and Further Results

• Several algorithms known in 1D

• Problem is harder in 2D

• Several metrics have been considered.

• Many interesting (difficult) questions for general domans.
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Evacuation
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Searching for an Exit (1/3)

• You are located at some point.

• You are told an exit is at distance 1 from you.

• Your max speed is 1.

• What is the best (time optimal) algorithm to find the exit?
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Searching for an Exit (2/3)

• Go for distance 1 (to the perimeter).

• On the perimeter choose a direction (CW or CCW).

• How long does it take you (in the worst case) to find the exit?
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Searching for an Exit (3/3)

• In the worst case, this algorithm takes time 1 + 2π ∼ 7.28.

• Can you do better than 1 + 2π?
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Evacuation from a Circle

• k ≥ 2 robots start from anywhere inside a disk.

exit

k robots

• Exit is located on the perimeter.
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Lets simplify the geometry!

• k robots start from the center of a disk.

exit

k robots

• Exit is located on the perimeter.
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Evacuation Problem

• Consider k mobile robots inside a circular disk of unit radius.

• The robots are required to evacuate the disk through an

unknown exit: a point situated on its boundary.

• We assume all robots having the same (unit) maximal speed

and starting at the centre of the disk.

• The robots may communicate in order to inform themselves

about the presence (and its position) or the absence of an exit.

• The goal is for all the robots to evacuate through the exit in

minimum time.
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Communication Models

• How do the robots communicate?

• We consider two models of communication between the robots:

– face-to-face (or local) communication model: robots

exchange information only when simultaneously located at

the same point, and

– wireless communication model: robots can communicate

with each other at any time.
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Evacuation Time

• Robots do not necessarily evacuate at the same time.

– Robots can try to find the exit on their own!

– As soon as a robot finds the exit it tries to inform the rest!

• Measuring the complexity of an algorithm.

– Minimum time required so that all robots evacuate.
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Face-to-Face Model: Evacuation Algorithm for 2 robots

• Theorem 1 There is an algorithm for evacuating the robots

from an unknown exit located on the perimeter of the disk

which takes time 1 + α/2 + 3 sin(α/2) where the angle α

satisfies the equation cos(α/2) = −1/3. It follows that the

evacuation algorithm takes time ∼ 5.74.

• Evacuation Algorithm

x x

yy

α
K

B

A

C

D
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Wireless Communication Model

• Theorem 2 There is an algorithm for evacuating two robots

from an unknown exit located on the perimeter of the disk

which takes time at most 1 + 2π
3 +
√

3 ≈ 4.826.

• Evacuation Algorithm

x x

A

B

c(x)
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What Else is Known about Evacuation
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Blocking
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Rectangular Domain

• Consider a rectangular grid domain

including buildings and sensors in specific locations.
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Penetration

• Intruders attempt to penetrate walking in a rectangular

domain.

• Sensors are placed at nodes of a regular spaced grid laid out

over the rectangle.
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Protection & Blocking

• An intruder that steps within the sensing range of a sensor will

be detected.

• It is desired that we prevent potential attacks in either one

dimension or two dimensions.

– A one-dimensional attack succeeds when an intruder enters

from the top (North) side and exits out the bottom (South)

side of the domain without being detected.

– Preventing attacks in two dimensions requires that we

simultaneously prevent the intruder from either entering

North and exiting South or entering East (left side) and

exiting West (right side) undetected.

FPS 2015



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 54

Fault Tolerant

• Initially, all of the sensors are working properly and the domain

is fully protected, i.e., attacks will be detected, in both

dimensions

• Over time, the sensors may fail and we are left with a subset of

working sensors. Under these conditions we wish to

1. determine if one or two-dimensional attack detection still

persists and

2. if not, restore protection by adding the least number of

sensors required to ensure detection in either one or two

dimensions.
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Blocking: k-Fault Tolerant

• Main Problem:

1. Decide if a subset of the sensors provides protection with up

to k faults and

2. if not, find the minimum number of grid points to add

sensors to in order to achieve k fault-tolerance

3. or, if not, find the minimum number of grid points to add

sensors to in order to achieve k fault-tolerance that

minimizes the total or max movement.

• Also interesting for optimally restoring k-fault tolerant

protection in one dimension and for restoring protection in two

dimensions (optimally for k = 0 and approximately otherwise).
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Main Idea: Steiner Points

• Add four virtual points: N,S,E,W
N

S

EW

• Sensors (Steiner Points) are placed at nodes of a regular spaced

grid laid out over the rectangle.
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Results

• We show the following for an m× n grid:

1. There exist O(mn) time algorithms for solving the one- and

two-dimensional k-protection decision problems.

2. There exists a O(kmn log(mn)) time algorithm for solving

the one-dimensional k-protection placement problem.

3. There exists a O(m2n2) time algorithm for solving the

two-dimensional protection placement problem.

4. There exists a O(kmn log(mn)) time 2-approximation

algorithm for solving the two-dimensional k-protection

placement problem.

• In all of the above we assume k < min{m,n} as we shall see

that the problems can not be solved otherwise.
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Extensions

• More general versions of these problems could be studied,

including protecting:

1. domains containing impassable regions,

2. non-rectangular domains, and

3. against more general attacks than just North-South or

East-West.
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Conclusions

• Many optimization problems are tied to infrastructure security.

• Their study, analysis and appropriate implementation could be

vital to the proper functioning of infrastrucure in our society.
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