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One-way Function

Function h : A→ B that is easy to compute on every input, but
hard to invert given the image of an arbitrary input.
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Example: Password-based Authentication

User (username, pwd) Computer

username, pwd
−−−−−−−−−−−−−→

Compute h(pwd)

username1 h(pwd1)

username2 h(pwd2)

username3 h(pwd3)

...
...

usernameN h(pwdN)
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Exhaustive Search

Online exhaustive search:

◦ Computation: N := |A|
◦ Storage: 0

◦ Precalculation: 0

Precalculated exhaustive search:

◦ Computation: 0

◦ Storage: N

◦ Precalculation: N
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Precalculation Phase

Martin Hellman’s cryptanalytic time-memory trade-off (1980).

Precalculation phase to speed up the online attack: T ∝ N2

M2
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Reduction Functions

R : B → A is used to map a point from B to A arbitrarily

It should be fast to compute (w.r.t. h)

R should be surjective.

R should be deterministic.

∀a ∈ A, |R−1(a)| ≈ |B||A|

Typically, R : b 7→ b mod N.
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Coverage and Collisions

Collisions occur during the precalculation phase.

Many tables with different reduction functions.
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Online Attack
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Collisions during the Online Phase

Collisions occur between online chain and precalculated ones.
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Online Attack (Recap)

Given one output y ∈ B, we compute y1 := R(y) and

generate a chain starting at y1: y1
f→ y2

f→ y3
f→ . . . ys

S1

Sm

E1

Em

y1

y

ys

y1

y2

not y1

time needed
to rebuild the chain

time needed
to find a matching endpoint
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Oechslin’s Rainbow Tables (2003)

Use a different reduction function per column: rainbow tables.

Invert h : A→ B.

Define R i : B → A arbitrary (reduction) functions.

If 2 chains collide in different columns, they don’t merge.

If 2 chains collide in same column, merge can be detected.
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Online Procedure is More Complex

Given one output y ∈ B, we compute y1 := R(y) and generate a
chain starting at y1:

y1
ft−s→ y2

ft−s+1→ y3
ft−s+2→ . . . ys

S1

Sm

E1

Em

y1

y

ys

y1

y2

y1y

time needed
to rebuild the chain

time needed
to find a matching endpoint
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Success Probability of a Table is Bounded

Theorem

Given t and a sufficiently large N, the expected maximum number
of chains per perfect rainbow table without merge is:

mmax(t) ≈ 2N

t + 1
.

Theorem

Given t, for any problem of size N, the expected maximum
probability of success of a single perfect rainbow table is:

Pmax(t) ≈ 1−
(

1− 2

t + 1

)t

which tends toward 1− e−2 ≈ 86% when t is large.

Gildas Avoine 16



Average Cryptanalysis Time

Theorem

Given N, m, `, and t, the average cryptanalysis time is:

T =
k=`t∑
k=1

c=t−b k−1
`
c

pk(
(t − c)(t − c + 1)

2
+

i=t∑
i=c

qi i)`+

(1− m

N
)`t(

t(t − 1)

2
+

i=t∑
i=1

qi i)`

where

qi = 1− m

N
− i(i − 1)

t(t + 1)
.
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Windows NT LM Hash (Results)

Cracking a 7-char (max) alphanumerical password (NT LM Hash)
on a PC. Size of the problem: N = 241.7.

Brute Force TMTO

Online Attack (op) 1.78× 1012 4.48× 107

Time 99 hrs 9.0 sec

Precalculation (op) 0 6.29× 1014

Time 0 1458 days

Storage 0 16 GB
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Interleaving Rational

A TMTO treats all possible preimages equally.

What if preimages have a non-uniform distribution?

Typical use case: passwords

Charset Set Size Proportion

Alphanum (length 1-7) 4.31× 1012 98.57%
AN + 34 special char. (length 7) 7.16× 1013 1.43%

Source: statistics on the RockYou dataset

ad4sOx8 cs9sSh1
1234567

helloootest123

aKx0m"=
Qw'u40C

%bk2:/N pass12!

qwerty?

1.43% of passwords 98.57% of passwords
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Interleaving Concept

Input space is partitionedA TMTO is built for each
subspaceSequential search may be fine but is not the best

solutionInstead, order of search is interleavedInterleaving order is
computed such that it minimizes average time
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Interleaving Memory Division

?

?

?

How to divide the memory between sub-TMTO’s ? Grid search or
metaheuristic search for the average time In this case: speedup of

16.45 w.r.t. single TMTO
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Limits and Strength of TMTOs

A TMTO is never better than a brute force.

TMTO makes sense in several scenarios.

◦ Attack repeated several times.
◦ Lunchtime attack.
◦ Attacker is not powerful but can download tables.

Two conditions to perform a TMTO.

◦ Reasonably-sized problem.
◦ One-way function (or equivalent problem).

Interleaving is efficient when considering a non-uniform
distribution: cracking passwords, deanonymization (hashed
email or mac address).
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