

How (not) to use TLS between 3 parties

= Formal Model for Authenticated and Confidential Channel Establishment over 3 Parties=

presented by **Ioana Boureanu (Univ. of Surrey, SCCS, UK)** given at the Open University, 24th of November 2016

a collaboration with K. Bhargavan (Inria, Paris, France)
C. Onete (IRISA, Rennes, France),
P. A. Fouque (UR1, Rennes, France),
B. Richard (Orange)

Based on a paper accepted for publication at Euro S&P 2017

PRESENTATION OUTLINE

- 1. Context/Aim: achieve secure communication over insecure channels
- 2. Authenticated and Confidential Channel Establishment (ACCE) Model -- 2 parties
- 3. Attacks on Cloudflare's Keyless SSL: How 2ACCE-security breaks with 3 parties
- 4. A Provably Secure Keyless SSL Variant
- 5. ACCE with 3 parties (3ACCE): A Glimpse of the Formalisation
- 6. Food for Thought

Web (HTTP) traffic threat

- eavesdropping, impersonating, theft
 - Examples
 - Un-trusted ISPs
 - Vicious attackers
 - Mass surveillance ...

Mobile-networks threat (2G, 3G, 4G)

. . . .

Scale of consumer cybercrime only (Norton by Symantec, 2013 report)

- 1 MILLION+ VICTIMS DAILY
- Costs: \$ 298 per victim, 50% more than in 2012

Why SSL/TLS? ... e.g., HTTP vs. HTTPS

@ OU, 24th of November 2016

TLS & Authenticated and Confidential Channel Establishment (ACCE)

ACCE or AKE (authenticated key exchange) security models, and protocols implementing them (provably or otherwise) were conceived for **2-party end-to-end security**

What guarantees Client do/should/could we have for 3-party ACCE??

Content Filter/

Reverse Caching Proxy or **Content Delivery Network** (CDN)/
(Web) Application Firewall/
Corporate Proxy/...

product called Keyless SSL

Server

How (not) to use TLS between 3 parties

PRESENTATION OUTLINE

- 1. Context/Aim: achieve secure communication over insecure channels
- 2. Authenticated and Confidential Channel Establishment (ACCE) Model -- 2 parties
- 3. Attacks on Cloudflare's Keyless SSL: How 2ACCE-security breaks with 3 parties
- 4. A Provably Secure Keyless SSL Variant
- 5. ACCE with 3 parties (3ACCE): A Glimpse of the Formalisation
- 6. Food for Thought

Towards Secure Communication over Insecure Channels

Done using the crypto "toolbox":

Encryption:

Symmetric-key encryption: block ciphers, stream ciphers

Public-key encryption: RSA, ElGamal, ...

Authentication:

MACs:

shared-key between signer and verifier

Digital signatures: private key used for signing

public key used for verification

(2-party) ACCE/AKE Threat-Model: Background

Extra guarantee:

forward-secrecy = if ocrrupts a user now and gets hold of its long-term secret key, then occurred break the security of past sessions

@ OU, 24th of November 2016

PRESENTATION OUTLINE

- 1. Context/Aim: achieve secure communication over insecure channels
- 2. Authenticated and Confidential Channel Establishment (ACCE) Model -- 2 parties
- 3. Attacks on Cloudflare's Keyless SSL: How 2ACCE-security breaks with 3 parties
- 4. A Provably Secure Keyless SSL Variant
- 5. ACCE with 3 parties (3ACCE): A Glimpse of the Formalisation
- 6. Food for Thought

Preamble: The TLS/SSL Handshake (RSA-mode)

Preamble: Classical TLS over CDNs vs. Cloudflare's Keyless SSL

Cloudflare's Keyless SSL

Keyless SSL's Pb1: Lack of Accountability

The CDN can send what it pleases on behalf of S, without S's knowledge/control!

If the server S knew the channel-key, the S could monitor/audit the CDN's behaviour!

Keyless SSL's Pb2: One, All-Compromising Malicious CDN

A malicious CDN can compromise all sessions! Mass surveillance?!

If the server S got more than just a out-of-context KE_C (e.g., C-side session-data), then this attack would be harder for malicious CDNs

PRESENTATION OUTLINE

- 1. Context/Aim: achieve secure communication over insecure channels
- 2. Authenticated and Confidential Channel Establishment (ACCE) Model -- 2 parties
- 3. Attacks on Cloudflare's Keyless SSL: How 2ACCE-security breaks with 3 parties
- 4. A Provably Secure Keyless SSL Variant
- 5. ACCE with 3 parties (3ACCE): A Glimpse of the Formalisation
- 6. Food for Thought

UNIVERSITY OF SURREY

Keyless SSL's Main Pbs: Recall

 $\{SFin\}_{K_S}$

Keyless SSL's Fix: First-Attempt

Keyless SSL's Fix-Attempt: Resumption vs Accountability

Resumption: run a shorter handshake => computation of session-keys related to a previous, full handshake

Given msk, MW just needs a new tuple of nonces for new session-keys

Accountability??

Keyless SSL's Fix: Second Attempt

Fixed Keyless TLS 1.2

 $\{SFin\}_{K_S}$

Authentication and Secure Channel:

- $-N_S$ generated honestly
- KE_C given in full context, allows S (honest) to prevent channel-security attacks by MW corruption

Accountability (by S for the C—MW link):

- MW forwards the nonces of MW and C, encrypted CFin, and KE_C
 - S can verify the forwarded nonces are correct as per Cfin and KE_C
- S sends directly the session keys and encrypted SFin
 - No session resumption

Other features:

- Security w.r.t. to new formal ACCE model
- More security guarantees, under some assumptions, such as *content* soundness (i.e., "MW can only deliver contracted material")

Fixing Keyless SSL – Some More Results & Discussions

Original Keyless TLS 1.2. in DHE mode

- -- It exhibits cross-protocol attack
- -- It ensures no accountability & no content soundness
- -- Unfortunately, our Fixed Keyless TLS 1.2 in DHE mode has the same drawbacks as our Fixed Keyless TLS 1.2 in RSA mode (i.e., large PKI, heavy server-side computation)

Keyless TLS 1.3

- -- It did not exist in CloudFlare's original proposal
- -- In our paper, we propose a Keyless TLS 1.3 which
 - does not allow resumption
 - is more efficient than Fixed Keyless TLS 1.2 and
 - needs a lighter PKI

A General Tradeoff:

-- accountability vs limited resumption

-- in the full version, we show how to attain 3(S)ACCE -security and allow session resumption, if we allow the client to be aware that the handshake is legitimately proxied

PRESENTATION OUTLINE

- 1. Context/Aim: achieve secure communication over insecure channels
- 2. Authenticated and Confidential Channel Establishment (ACCE) Model -- 2 parties
- 3. Attacks on Cloudflare's Keyless SSL: How 2ACCE-security breaks with 3 parties
- 4. A Provably Secure Keyless SSL Variant
- 5. ACCE with 3 parties (3ACCE): A Glimpse of the Formalisation
- 6. Food for Thought

The "Proxied AKE" Infrastructure -> Our 3ACCE Model

Three-party system:

- Client, Server, Middleware (MW)
- Server owns contents $\omega_1, ... \omega_n$
 - Each ω_i associated with $(sk_i^S, pk_i^S, Cert_i^S)$
- MW agrees on contract with Server that:
 - MW can later cache/"process" ω_i and serve it to clients
 - MW has its own credentials (sk_{MW}, pk_{MW})
 - For each contracted ω_i , MW gets $(pk_i^{S,MW}, Cert_i^{S,MW})$, maybe $sk_i^{S,MW}$

Composition of two 2-party channels (C-MW & MW-S)

- C-MW is always unilaterally authenticated
- MW-S is always mutually authenticated
- C-S (direct) is always unilaterally authenticated

We defined four security notions

- Authentication
- Adapted from the 2-party case
- Channel security
- Accountability: if MW impersonates S, then S knows key
- Content soundness: MW cannot deliver uncontracted content

Main technical difficulty: session partnering

Protocol is executed by parties

- Each execution is a party instance
- Party instances execute protocol sessions, which have sid's
- Each party instance keeps track of:
 - Session ID sid e.g. randomness and values used in key-computation
 - Partner ID pid party with which one thinks they communicate

For CDN, pid could be server, while "real" partner is MW

- Computed session key set K
- Some other AKE technicalities (e.g., reveal bit, channel bit, etc.)

2-Partnering: 2 instances are partnered if they share sid's

But importantly... partnering defines which sessions can be secured

Session-Partnering: Key for 3ACCE Authentication & Channel security

There are two cases:

- Client is aware of MW (essentially 2-partnering)
- Client is unaware of MW (CDN/Keyless SSL)

If client is unaware of MW, there are two sub-cases:

- If MW needs S (Keyless SSL): four instances partnered:
 - Client instance, MW1 instance, MW2 instance, S instance
- If MW is autonomous (like in CDN): 2 instances partnered:
 - Client + MW1 instance
 - Partnering extends on 3 parties (and corrupting S is treated within)

Using 3-partnering this way allows us to re-use 2-party security definitions for authentication + channel security

New 3ACCE Guarantees: Accountability & Content Soundness

Accountability

- CDNs allow MW to impersonate S, with S's accord
- It is in S's interest not to care beyond that
- However, client has no way of distinguishing MW & S
- Solution:
 - Either make client aware of the MW
 - Or make sure MW unable to "hurt" client (by auditing secure channel)

Content Soundness

- MW only allowed to know some contents (by contact)
- Later, MW will contact S and ask to cache contents
- S must make sure only allowed contents are sent

- Theorem 1. Let Π be the 3(S)ACCE-K-SSL variant. We denote by P be the unilaterally-authenticated TLS 1.2 handshake, by P', the mutually-authenticated TLS 1.2 handshake, and by Ψ , the transformation of P' to an AKE protocol by the computation of the export key ek. If the following conditions hold:
 - If P is a 2-SACCE-secure protocol, P' is a 2-ACCE-protocol, and $\Psi(P')$ yields pseudorandom keys;
 - For TLS-DHE: if the hash function H is collision-resistant and the signature scheme used to generate PSign is unforgeable;
- For TLS-RSA: if P guarantees channel security; Then Π guarantees 3(S)ACCE-security⁶.

PRESENTATION OUTLINE

- 1. Context/Aim: achieve secure communication over insecure channels
- 2. Authenticated and Confidential Channel Establishment (ACCE) Model -- 2 parties
- 3. Attacks on Cloudflare's Keyless SSL: How 2ACCE-security breaks with 3 parties
- 4. A Provably Secure Keyless SSL Variant
- 5. ACCE with 3 parties (3ACCE): A Glimpse of the Formalisation
- 6. Food for Thought

Keyless SSL and Other TLS "Compositions" over 3 Parties

CDNs, Filtering, Proxy-ing

- Uses a "cache/process then deliver" strategy to improve efficiency in content delivery over HTTPS:// or to filter content. etc.
- Provide such services transparently to clients
- A single CDN/Proxy can serve many content owners simultaneously
- TLS/SSL was not designed to be run in 2+, i.e., be composably secure
- These services were not designed with client-security and privacy in mind
- Bespoke solutions like Keyless SSL can be even worse than simple "TLS sequencing"
- These services can provide a mass surveillance tool since, e.g., a lot of information passes through a single CDN!
- These services do not allow clients to make informed decisions based on whether they communicate with a CDN/proxy, etc. or the server directly

Maybe, the client should know and would choose security over efficiency!

THANK YOU!

QUESTIONS?

- The speaker thanks C. Onete for some of the material/illustrations on these slides.
- The copyright of certain figures/icons/pictures used within is not attributed to the presenter. These were employed for illustration purposes only and not to be re-used without further research into their copyright.