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Protocols and their security

Distributed IT systems rely on protocols.
They

• specify how the different participants
interact

• provide functionality

• ensure – if necessary – security
properties throughout the interaction

Security protocol design is critical and
error-prone.

How to be convinced that a protocol is actually secure?

Use formal methods: prove the absence of attacks in a formal
model under certain assumptions
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Symbolic vs. Computational Model

Two main approaches to analyze and prove protocol security:

Symbolic Model Computational Model

Messages Terms Bitstrings

Attacker Dolev-Yao Probabilistic Polynomial
Time Turing Machine

Assumptions Perfect Cryptography Computational Hardness

Properties Trace properties (Reach-
ability, Correspondence)
or Equivalence Proper-
ties

Negligible Probability
of Winning the Security
Game
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Formal Methods

To prove that a protocol P ensures a property φ

P |= φ

we need a

• formal model with precise semantics

• specification of the protocol P in the formal model

• definition of the property φ in the formal model

Many tools for protocol security analysis:

• CaserFDR [Low98]

• ProVerif [Bla01], CryptoVerif [Bla06]

• AVISPA [ABB+05]

• Scyther [Cre08], Tamarin [SMCB12, MSCB13, BDS15]

• CertiCrypt [BGZB09], EasyCrypt [BGHZB11]

• F7 [FKS11]

• KISS [CDK12], AKISS [CCK12]
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Formal Methods Examples

Can be used to obtain proofs or certified implemen-
tations

• Certified Email [AB05]

• IEEE 802.11i (WiFi) [HSD+05]

• Transport Layer Security (TLS) [BFK+13]

but also to identify attacks and weaknesses

• Needham-Schroeder Protocol [Low96]

• SSL 3.0 [MSS98]

• PKCS#11 standard [DKS10]

• Helios voting system [SC11, BCP+11, BPW12]
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Trace vs equivalence properties

Two types of properties:

• Trace properties:
• (Weak) secrecy as reachability
• Authentication as correspondence
• Defined as properties on traces
• Protocol is secure if property holds on all traces

.

.

• Observational equivalence
• Stronger notions of secrecy (privacy . . . )
• Compares two protocol instances
• Protocol is secure if intruder cannot distinguish

both instances

≈
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Why observational equivalence?

Consider classic Dolev-Yao intruder for deterministic public-key
encryption:

enc(x , pk(k)) k

x

• Intruder can only decrypt if he knows the secret key

Now consider a simple voting system:

• Voter chooses v =“Yes” or v =“No”
• Encrypt v using server’s public key pk(k): c = enc(v , pk(k))
• Send c to server

Is the vote secret?

• Dolev-Yao: Yes, intruder does not know server’s secret key
• Reality: No, encryption is deterministic and there are only two

choices
• Attack: encrypt “Yes”, and compare to c
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Observational Equivalence vs Reachability

• Reachability-based (weak) secrecy is insufficient

• Stronger notion: intruder cannot distinguish
• a system where the voter votes “Yes” from
• a system where the voter votes “No”

• Observational equivalence between two systems

• Can be used to express:
• Strong secrecy
• Privacy notions, including unlinkability
• Game-based notions, e.g., ciphertext indistinguishability
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Running Example

• Auction system

• Property: strong secrecy of bids

• Property violated: Shout-out auction
• Broadcast bid (e.g., A or B)
• Send “A” in first system
• Send “B” in second system
• Observer knows if he is observing first or second system

• Property holds: using shared symmetric key
• Shared symmetric key k between bidder and auctioneer
• Send “{A}k” in first system
• Send “{B}k” in second system
• Observer has no access to k, does not know which system he

is observing

11 / 49



Running Example

• Auction system

• Property: strong secrecy of bids

• Property violated: Shout-out auction
• Broadcast bid (e.g., A or B)
• Send “A” in first system
• Send “B” in second system
• Observer knows if he is observing first or second system

• Property holds: using shared symmetric key
• Shared symmetric key k between bidder and auctioneer
• Send “{A}k” in first system
• Send “{B}k” in second system
• Observer has no access to k, does not know which system he

is observing

11 / 49



Running Example

• Auction system

• Property: strong secrecy of bids

• Property violated: Shout-out auction
• Broadcast bid (e.g., A or B)
• Send “A” in first system
• Send “B” in second system
• Observer knows if he is observing first or second system

• Property holds: using shared symmetric key
• Shared symmetric key k between bidder and auctioneer
• Send “{A}k” in first system
• Send “{B}k” in second system
• Observer has no access to k , does not know which system he

is observing

11 / 49



System and environment

• We separate environment and
system

• System: agents running
according to protocol

• Environment: adversary
acting according to its
capabilities

• Environment can observe:
• Output of the system
• If system reacts at all

System Sys

Environment Env

InSys OutSys

Interface

OutEnv InEnv
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Defining observational equivalence

• Two system specifications given as set of rules
• One rule per role action (send/receive)
• Running example shout-out auction:

X

OutSys(A)
System 1:

X

OutSys(B)
System 2:

• Interface and environment/adversary rule(s):

OutSys(X )

InEnv (X )

OutEnv (X )

InSys(X )

InEnv (X ) K (X )

OutEnv (true)

• K (X ) represents that environment knows term X
• last rule models comparisons by the adversary

• Each specification yields a labeled transition system
• Observational equivalence is a kind of bisimulation

accounting for the adversaries’ viewpoint and capabilities
• Our definition can be instantiated for various adversaries
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Diff terms

• General definition difficult to verify: requires inventing
simulation relation

• Idea: specialize for cryptographic protocols
• Consider strong bid secrecy:

• both systems differ in secret bid only, i.e.
• both specifications contain same rule(s) which differ only in

some terms

• Exploit this similarity in description and proof
• Approach: two systems described by one specification – using

diff-terms

• Running example

X

OutSys(A)

X

OutSys(B)

• Is equivalent to one rule with a diff-term

X

OutSys(diff(A,B))
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Approximating observational equivalence using mirroring

• Both systems contain the same rules modulo diff-terms

• Idea: assume that each rule simulates itself

• Mirrors each execution into the other system

• If the mirrors are valid executions, we have observational
equivalence (sound approximation)

• We represent executions using dependency graphs
• Computed via backwards constraint solving
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Dependency graphs and mirrors

Bidder picks A, observer compares to public value A

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (B) K (A)

OutEnv (true)

• Dependency graph mirror for bidder choice B is invalid
• Adversary choices stay fixed, comparison is with A
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Invalid mirrors and attacks

Bidder picks A/B, observer compares to public value A

OutSys(A)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (B) K (A)

OutEnv (true)

• Counter example to observational equivalence of the given
systems
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Valid mirror

Observer compares system output to itself

OutSys(A)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (B)

K (B)

InEnv (B) K (B)

OutEnv (true)

• All mirrors need to be valid for observational equivalence
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Dependency graph equivalence

A diff-system is dependency graph equivalent if mirrors of all
dependency graphs rooted in any rule on both sides are valid.

• Sound but incomplete approximation

• Efficient and sufficient in practice

Input:

• Protocol specification

• Property: equivalence given two choices for some term(s)
• Example: random value vs expected value

Output:

• Yes, observational equivalent

• No, dependency graph with invalid mirror

• Non-termination possible
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Why Tamarin?

Approach implemented in the Tamarin tool:

• Tamarin supports verification with:
• equational theories (DH), induction, loops, mutable state

• Security protocol model is based on rewriting

• Restricted First-Order Logic for security properties

• Equational theories modeling algebraic properties of
cryptographic primitives

• Constraint-solving algorithm for analysis of unbounded
number of sessions

• Performance good despite undecidability

• Interactive and fully automatic modes

• Parallelized for multi-core performance

21 / 49



Verifying observational equivalence in Tamarin

Implemented algorithm:

• Extended constraint solving

• (Normal) dependency graphs
• Important for state space reduction and termination

• Equivalence of dependency graphs by mirroring

• Convergent equational theories to deal with blind
signatures, trapdoor commitments and other complex
primitives

22 / 49
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(Electronic) Cash

Electronic Cash = digital equivalent

25 / 49



(Electronic) Cash

Electronic Cash = digital equivalent

25 / 49



(E-)Cash: Players and Phases

Bank

Client Seller

1. Withdrawal

2. Payment

3. Deposit
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Security properties of physical cash

• Unforgeability: Only the bank can create coins (trace
property).

• Anonymity: Nobody can distinguish which client makes a
payment (equivalence property).

• Untraceability: Nobody is able to decide whether two
payments were made by the same client (equivalence
property).

• Do they really hold?
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Electronic Cash vs. Electronic Payments

⇒ No anonymity and unlinkability!
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Anonymity

Nobody can distinguish which client makes a payment.

Definition:
Observational equivalence of two instances:

Instance 1 Instance 2

Withdraw ,
Spend

Withdraw

≈l

Withdraw

Withdraw ,
Spend

Note that the bank and the seller are corrupted.
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Unlinkability

Nobody is able to decide whether two payments were made by the same
client:

Withdraw
Spend

Withdraw
Spend

Withdraw
Withdraw

Spend

≈l

Withdraw
Spend

Withdraw

Withdraw
Spend

Withdraw
Spend
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Chaum’s On-Line Protocol

First on-line E-Cash protocol [Cha82] using

• blind signatures:
unblind(sign(blind(x , r), k), r) = sign(x , k)

• on-line verification by the bank to prevent double spending

Goal: ensure

• unforgeability

• anonymity

• unlinkability

in presence of dishonest

• banks

• sellers

• clients
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Withdrawal Phase

; b = blind(x , r)

s = sign(b, sk )

1. Verify signature s
2. Compute y = unblind(s, r) = sign(x , sk )

3. Coin = (x , y) = (x , sign(x , sk ))
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Payment and Deposit Phase

= (x , sign(x , sk ))

Verify signature

= (x , sign(x , sk ))

1. Verify signature
2. Check if deposited

OK
OK
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Results

Formal Verification with Tamarin:

Property Result Time

Unforgeability X < 1 s

Weak Anonymity X 7.6 s

Strong Anonymity X 1 m 13.7 s
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Protocol by Fujioka, Okamoto and Ohta [FOO92]

The protocol uses

• blind signatures:
unblind(sign(blind(x , r), k), r) = sign(x , k)

• commitments: open(commit(v , r), r) = v

to ensure:

• eligibility (trace property)
• vote privacy (equivalence property)

It runs in three phases:

• Eligibility Check
• Voting
• Counting

Authorities:

• Administrator
• Collector

Assumptions:

• Anonymous channel to the collector
36 / 49



Eligibility Check

Bob Administrator

sign(blind(commit( , rB1 ), rB2 ), sk ),

Verify signature & eligibility

sign(blind(commit( , rB1 ), rB2 ), sk )

Verify signature and unblind:

sign(commit( , rB1 ), sk )
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Voting Phase

Alice

Bob

Collector

sign(commit( , rA1 ), sk )

sign(commit( , rB1 ), sk )
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Counting Phase

Alice

Bob

Collector

1: commit( , rB1 )

2: commit( , rA1 )

2: rA1

1: rB1
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Vote-Privacy

We define Vote-Privacy using observational equivalence between
two situations:

Instance 1 Instance 2

≈l

Analysis in Tamarin: FOO ensures Vote-Privacy and Eligibility.
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Receipt-Freeness

A protocol is Receipt-Free if a voter cannot construct a convincing
receipt that he voted for a certain candidate.

Instance 1 Instance 2

≈l

Secret Data Fake Data
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Protocol by Okamoto [Oka96]

FOO is not receipt-free: a voter can prove that he voted for a
certain candidate by revealing his key and his random values.

The protocol by Okamoto (an extension of FOO) addresses this
using trapdoor-commitments which can be opened differently
using a trapdoor:

• open(tdcommit(m, r , td), r) = m

• open(tdcommit(m1, r , td), f (m1, r , td ,m2)) = m2

• tdcommit(m2, f (m1, r , td ,m2), td) = tdcommit(m1, r , td)

• f (m1, f (m, r , td ,m1), td ,m2) = f (m, r , td ,m2)

Analysis in Tamarin: the protocol by Okamoto ensures Eligibility,
Vote-Privacy and Receipt-Freeness.
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Other Examples

• Signed Diffie-Hellman key exchange
• Special equational theory to model Diffie-Hellman

exponentiation
• Real-or-random secrecy of session key
• Needs manual guidance in one subcase
• Automatically completed proof in 2.5 minutes

• TPM Envelope
• Real-or-random secrecy
• Finds attack for deterministic encryption

• Despite previous proof wrt trace-based secrecy

• We recommend to use probabilistic encryption
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Summary of case studies

Protocol Property Result Time
Chaum Unforgeability Verified 0.2s
Chaum Anonymity Verified 7.6s
Chaum Untraceability Verified 1m13.7s

FOO Eligibility Verified 10.3s
FOO Vote Privacy Verified 4m11.1s

Okamoto Eligibility Verified 8.4s
Okamoto Vote Privacy Verified 1m20.3s
Okamoto Receipt-Freeness Verified 13m35.8s

Signed DH Key Exchange RoR secrecy Verified manual

TPM Envelope RoR secrecy Attack 1.5 s
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Conclusions & Future Work

• Equivalence properties are necessary to specify complex
security properties

• Use sound approximation as equivalence is difficult to verify
• Resulting implementation in Tamarin is effective and

efficient, illustrated by many case studies:
• Chaum’s e-cash protocol: Anonymity and Unlinkability
• FOO e-voting protocol: Vote-Privacy
• Okamoto e-voting protocol: Receipt-Freeness
• Other examples: real-or-random key secrecy for Signed

Diffie-Hellman, TPM Envelope protocol, . . .

• High degree of automation
• Future work:

• Implement more precise approximation
• Protocols with loops: need invariants and induction
• Further case studies

• Signed Diffie-Hellman with Perfect Forward Secrecy
• NAXOS, authenticated key exchange with PFS
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Thank you for your attention!

Questions?

jannik.dreier@loria.fr

Tamarin tool and all case studies available at:

http://tamarin-prover.github.io/
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TPM Envelope attack

#i : iequality[DiffIntrEquality( )]

Alice2( ~n, ~s ) !AIK( ~aik ) In( sign(<'certpcr', h(<h(<'pcr0', ~n>), 'deny'>)>, ~aik) )

#k : Alice3[Denied( ~s ),
            DiffProtoAlice3( )]

#vk : coerce[!KU( sign(<'certkey', h(<h(<'pcr0', ~n>), 'obtain'>), pk(~sk)>, ~aik) ),
             DiffIntrCoerce( )]

#vf.1 : isend

Alice1( ~n ) Fr( ~s ) !AIK( ~aik )
In( sign(<'certkey', h(<h(<'pcr0', ~n>), 'obtain'>), pk(~sk)>,
         ~aik)
)

#vr : Alice2[Secret( ~s ),
             DiffProtoAlice2( )]

Out( aenc(~s, pk(~sk)) ) Alice2( ~n, ~s ) Alice2reveal( ~s )

Alice2reveal( ~s ) Fr( ~f )

#vr.5 : Challenge[Challenge( ~s ),
                  DiffProtoChallenge( )]

Out( ~s )

#vk.1 : caenc[!KU( aenc(~s, pk(~sk)) ),
              DiffIntrConstrcaenc( )]

Fr( ~n ) PCR( 'pcr0' ) PCR_Write( 'pcr0' )

#vr.1 : Alice1[PCR_Write( h(<'pcr0', ~n>) ),
               DiffProtoAlice1( )]

PCR( h(<'pcr0', ~n>) ) PCR_Write( h(<'pcr0', ~n>) ) Alice1( ~n )

PCR( h(<'pcr0', ~n>) ) Fr( ~sk ) In( 'obtain' )

#vr.4 : CreateLockedKey[PCR_Read( h(<'pcr0', ~n>) ),
                        DiffProtoCreateLockedKey( )]

PCR( h(<'pcr0', ~n>) ) !KeyTable( h(<h(<'pcr0', ~n>), 'obtain'>), ~sk ) Out( pk(~sk) )

PCR_Write( h(<'pcr0', ~n>) ) PCR( h(<'pcr0', ~n>) ) In( 'deny' )

#vr.7 : PCR_Extend[PCR_Write( h(<h(<'pcr0', ~n>), 'deny'>) ),
                   DiffProtoPCR_Extend( )]

PCR( h(<h(<'pcr0', ~n>), 'deny'>) ) PCR_Write( h(<h(<'pcr0', ~n>), 'deny'>) )

#vk.2 : coerce[!KU( ~s ),
               DiffIntrCoerce( )]

Fr( ~aik )

#vr.2 : PCR_Init[PCR_Init( ),
                 PCR_Write( 'pcr0' ),
                 DiffProtoPCR_Init( )]

PCR( 'pcr0' ) PCR_Write( 'pcr0' ) !AIK( ~aik ) Out( pk(~aik) )

!AIK( ~aik ) !KeyTable( h(<h(<'pcr0', ~n>), 'obtain'>), ~sk )

#vr.3 : PCR_CertKey[DiffProtoPCR_CertKey( )]

Out( sign(<'certkey', h(<h(<'pcr0', ~n>), 'obtain'>), pk(~sk)>, ~aik) )

PCR( h(<h(<'pcr0', ~n>), 'deny'>) ) !AIK( ~aik )

#vr.6 : PCR_Quote[PCR_Read( h(<h(<'pcr0', ~n>), 'deny'>) ),
                  DiffProtoPCR_Quote( )]

Out( sign(<'certpcr', h(<h(<'pcr0', ~n>), 'deny'>)>,
          ~aik)
)

PCR( h(<h(<'pcr0', ~n>), 'deny'
       >)
)

#vk.3 : coerce[!KU( pk(~sk) ),
               DiffIntrCoerce( )]

#vk.4 : pub[!KU( 'obtain' ),
            DiffIntrPubConstr( )]

#vf.5 : isend

#vk.5 : coerce[!KU( sign(<'certpcr', h(<h(<'pcr0', ~n>), 'deny'>)>, ~aik) ),
               DiffIntrCoerce( )]

#vf.7 : isend

#vk.6 : pub[!KU( 'deny' ),
            DiffIntrPubConstr( )]

#vf.8 : isend
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Related Work
APTE AKISS ProVerif ProVerifDH SPEC Maude-NPA Tamarin Extension

Unbounded sessions x x x x x
Mutable state x x x ? x x
Diffie-Hellman x x x x x x x
Definable crypto x x x x x x x
Verification x x x x x x x x
Obs. equiv. x x x x / x

• APTE, AKISS
• Limited to bounded number of sessions

• ProVerif
• No mutable state support
• DH support only without observational equivalence

• SPEC
• Fixed crypto primitives, bounded number of sessions

• StatVerif, SAPIC
• Support mutable state, but no observational equivalence

• Maude-NPA
• Creates synchronous product of two similar protocols
• Suffers from termination issues - only finds attacks
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Observational equivalence - definition

Two sets of multiset rewrite rules SA and SB are observational
equivalent with respect to an environment Env (and interface IF )
if there is a relation between the initial states in SA ∪ IF ∪ Env
(left system) and SB ∪ IF ∪ Env (right system), and for all pairs of
states in that relation:

• If the left system can make a move with an environment or
interface rule, the right system can match it precisely

• Resulting states are in the relation

• If the left system can make a move with an SA rule, the right
system can match it, possibly using multiple steps

• resulting states are in the relation

The same holds in the other direction.
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Algorithm

1: function Verify(S)
2: RU ← L(S) ∪ R(S) ∪ IF ∪ Env
3: while RU 6= ∅ do
4: choose r ∈ RU, RU ← (RU \ {r})
5: compute DG←dgraphs(r) by constraint solving
6: if ∃dg∈DG s.t. mirrors(dg) lacks ground instances
7: then return “potential attack found: ”, dg

8: return “verification successful”
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Unforgeability

Only the bank can create coins.

Definition:
On every trace:

withdraw( )

spend( )

Withdraw

Spend

preceeded by distinct occurence
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