
Automated Symbolic Proofs of
Observational Equivalence

Jannik Dreier

LORIA, Université de Lorraine, Nancy

joint work with:

David Basin, Ralf Sasse - ETH Zurich, Institute of Information Security

Charles Duménil, Steve Kremer - LORIA, INRIA, Nancy

Séminaire sur la Confiance Numérique
Clermont-Ferrand
November 3, 2016

1 / 49

Protocols and their security

Distributed IT systems rely on protocols.
They

• specify how the different participants
interact

• provide functionality

• ensure – if necessary – security
properties throughout the interaction

Security protocol design is critical and
error-prone.

How to be convinced that a protocol is actually secure?

Use formal methods: prove the absence of attacks in a formal
model under certain assumptions

2 / 49

Protocols and their security

Distributed IT systems rely on protocols.
They

• specify how the different participants
interact

• provide functionality

• ensure – if necessary – security
properties throughout the interaction

Security protocol design is critical and
error-prone.

How to be convinced that a protocol is actually secure?

Use formal methods: prove the absence of attacks in a formal
model under certain assumptions

2 / 49

Protocols and their security

Distributed IT systems rely on protocols.
They

• specify how the different participants
interact

• provide functionality

• ensure – if necessary – security
properties throughout the interaction

Security protocol design is critical and
error-prone.

How to be convinced that a protocol is actually secure?

Use formal methods: prove the absence of attacks in a formal
model under certain assumptions

2 / 49

Protocols and their security

Distributed IT systems rely on protocols.
They

• specify how the different participants
interact

• provide functionality

• ensure – if necessary – security
properties throughout the interaction

Security protocol design is critical and
error-prone.

How to be convinced that a protocol is actually secure?

Use formal methods: prove the absence of attacks in a formal
model under certain assumptions

2 / 49

Symbolic vs. Computational Model

Two main approaches to analyze and prove protocol security:

Symbolic Model Computational Model

Messages Terms Bitstrings

Attacker Dolev-Yao Probabilistic Polynomial
Time Turing Machine

Assumptions Perfect Cryptography Computational Hardness

Properties Trace properties (Reach-
ability, Correspondence)
or Equivalence Proper-
ties

Negligible Probability
of Winning the Security
Game

3 / 49

Formal Methods

To prove that a protocol P ensures a property φ

P |= φ

we need a

• formal model with precise semantics

• specification of the protocol P in the formal model

• definition of the property φ in the formal model

Many tools for protocol security analysis:

• CaserFDR [Low98]

• ProVerif [Bla01], CryptoVerif [Bla06]

• AVISPA [ABB+05]

• Scyther [Cre08], Tamarin [SMCB12, MSCB13, BDS15]

• CertiCrypt [BGZB09], EasyCrypt [BGHZB11]

• F7 [FKS11]

• KISS [CDK12], AKISS [CCK12]
4 / 49

Formal Methods Examples

Can be used to obtain proofs or certified implemen-
tations

• Certified Email [AB05]

• IEEE 802.11i (WiFi) [HSD+05]

• Transport Layer Security (TLS) [BFK+13]

but also to identify attacks and weaknesses

• Needham-Schroeder Protocol [Low96]

• SSL 3.0 [MSS98]

• PKCS#11 standard [DKS10]

• Helios voting system [SC11, BCP+11, BPW12]

5 / 49

Trace vs equivalence properties

Two types of properties:

• Trace properties:
• (Weak) secrecy as reachability
• Authentication as correspondence
• Defined as properties on traces
• Protocol is secure if property holds on all traces

.

.

• Observational equivalence
• Stronger notions of secrecy (privacy . . .)
• Compares two protocol instances
• Protocol is secure if intruder cannot distinguish

both instances

≈

6 / 49

Why observational equivalence?

Consider classic Dolev-Yao intruder for deterministic public-key
encryption:

enc(x , pk(k)) k

x

• Intruder can only decrypt if he knows the secret key

Now consider a simple voting system:

• Voter chooses v =“Yes” or v =“No”
• Encrypt v using server’s public key pk(k): c = enc(v , pk(k))
• Send c to server

Is the vote secret?

• Dolev-Yao: Yes, intruder does not know server’s secret key
• Reality: No, encryption is deterministic and there are only two

choices
• Attack: encrypt “Yes”, and compare to c

7 / 49

Why observational equivalence?

Consider classic Dolev-Yao intruder for deterministic public-key
encryption:

enc(x , pk(k)) k

x

• Intruder can only decrypt if he knows the secret key

Now consider a simple voting system:

• Voter chooses v =“Yes” or v =“No”
• Encrypt v using server’s public key pk(k): c = enc(v , pk(k))
• Send c to server

Is the vote secret?

• Dolev-Yao: Yes, intruder does not know server’s secret key
• Reality: No, encryption is deterministic and there are only two

choices
• Attack: encrypt “Yes”, and compare to c

7 / 49

Why observational equivalence?

Consider classic Dolev-Yao intruder for deterministic public-key
encryption:

enc(x , pk(k)) k

x

• Intruder can only decrypt if he knows the secret key

Now consider a simple voting system:

• Voter chooses v =“Yes” or v =“No”
• Encrypt v using server’s public key pk(k): c = enc(v , pk(k))
• Send c to server

Is the vote secret?

• Dolev-Yao: Yes, intruder does not know server’s secret key

• Reality: No, encryption is deterministic and there are only two
choices

• Attack: encrypt “Yes”, and compare to c

7 / 49

Why observational equivalence?

Consider classic Dolev-Yao intruder for deterministic public-key
encryption:

enc(x , pk(k)) k

x

• Intruder can only decrypt if he knows the secret key

Now consider a simple voting system:

• Voter chooses v =“Yes” or v =“No”
• Encrypt v using server’s public key pk(k): c = enc(v , pk(k))
• Send c to server

Is the vote secret?

• Dolev-Yao: Yes, intruder does not know server’s secret key
• Reality: No, encryption is deterministic and there are only two

choices
• Attack: encrypt “Yes”, and compare to c

7 / 49

Observational Equivalence vs Reachability

• Reachability-based (weak) secrecy is insufficient

• Stronger notion: intruder cannot distinguish
• a system where the voter votes “Yes” from
• a system where the voter votes “No”

• Observational equivalence between two systems

• Can be used to express:
• Strong secrecy
• Privacy notions, including unlinkability
• Game-based notions, e.g., ciphertext indistinguishability

8 / 49

Observational Equivalence vs Reachability

• Reachability-based (weak) secrecy is insufficient

• Stronger notion: intruder cannot distinguish
• a system where the voter votes “Yes” from
• a system where the voter votes “No”

• Observational equivalence between two systems

• Can be used to express:
• Strong secrecy
• Privacy notions, including unlinkability
• Game-based notions, e.g., ciphertext indistinguishability

8 / 49

Observational Equivalence vs Reachability

• Reachability-based (weak) secrecy is insufficient

• Stronger notion: intruder cannot distinguish
• a system where the voter votes “Yes” from
• a system where the voter votes “No”

• Observational equivalence between two systems

• Can be used to express:
• Strong secrecy
• Privacy notions, including unlinkability
• Game-based notions, e.g., ciphertext indistinguishability

8 / 49

Plan

1 Introduction

2 Defining Observational Equivalence

3 Verifying Observational Equivalence

4 Applications
Chaum’s e-cash protocol
FOO e-voting protocol
Okamoto’s e-voting protocol
Other examples

5 Conclusion

9 / 49

Plan

1 Introduction

2 Defining Observational Equivalence

3 Verifying Observational Equivalence

4 Applications
Chaum’s e-cash protocol
FOO e-voting protocol
Okamoto’s e-voting protocol
Other examples

5 Conclusion

10 / 49

Running Example

• Auction system

• Property: strong secrecy of bids

• Property violated: Shout-out auction
• Broadcast bid (e.g., A or B)
• Send “A” in first system
• Send “B” in second system
• Observer knows if he is observing first or second system

• Property holds: using shared symmetric key
• Shared symmetric key k between bidder and auctioneer
• Send “{A}k” in first system
• Send “{B}k” in second system
• Observer has no access to k, does not know which system he

is observing

11 / 49

Running Example

• Auction system

• Property: strong secrecy of bids

• Property violated: Shout-out auction
• Broadcast bid (e.g., A or B)
• Send “A” in first system
• Send “B” in second system
• Observer knows if he is observing first or second system

• Property holds: using shared symmetric key
• Shared symmetric key k between bidder and auctioneer
• Send “{A}k” in first system
• Send “{B}k” in second system
• Observer has no access to k, does not know which system he

is observing

11 / 49

Running Example

• Auction system

• Property: strong secrecy of bids

• Property violated: Shout-out auction
• Broadcast bid (e.g., A or B)
• Send “A” in first system
• Send “B” in second system
• Observer knows if he is observing first or second system

• Property holds: using shared symmetric key
• Shared symmetric key k between bidder and auctioneer
• Send “{A}k” in first system
• Send “{B}k” in second system
• Observer has no access to k , does not know which system he

is observing

11 / 49

System and environment

• We separate environment and
system

• System: agents running
according to protocol

• Environment: adversary
acting according to its
capabilities

• Environment can observe:
• Output of the system
• If system reacts at all

System Sys

Environment Env

InSys OutSys

Interface

OutEnv InEnv

12 / 49

Defining observational equivalence

• Two system specifications given as set of rules
• One rule per role action (send/receive)
• Running example shout-out auction:

X

OutSys(A)
System 1:

X

OutSys(B)
System 2:

• Interface and environment/adversary rule(s):

OutSys(X)

InEnv (X)

OutEnv (X)

InSys(X)

InEnv (X) K (X)

OutEnv (true)

• K (X) represents that environment knows term X
• last rule models comparisons by the adversary

• Each specification yields a labeled transition system
• Observational equivalence is a kind of bisimulation

accounting for the adversaries’ viewpoint and capabilities
• Our definition can be instantiated for various adversaries

13 / 49

Plan

1 Introduction

2 Defining Observational Equivalence

3 Verifying Observational Equivalence

4 Applications
Chaum’s e-cash protocol
FOO e-voting protocol
Okamoto’s e-voting protocol
Other examples

5 Conclusion

14 / 49

Diff terms

• General definition difficult to verify: requires inventing
simulation relation

• Idea: specialize for cryptographic protocols
• Consider strong bid secrecy:

• both systems differ in secret bid only, i.e.
• both specifications contain same rule(s) which differ only in

some terms

• Exploit this similarity in description and proof
• Approach: two systems described by one specification – using

diff-terms

• Running example

X

OutSys(A)

X

OutSys(B)

• Is equivalent to one rule with a diff-term

X

OutSys(diff(A,B))

15 / 49

Diff terms

• General definition difficult to verify: requires inventing
simulation relation

• Idea: specialize for cryptographic protocols
• Consider strong bid secrecy:

• both systems differ in secret bid only, i.e.
• both specifications contain same rule(s) which differ only in

some terms

• Exploit this similarity in description and proof
• Approach: two systems described by one specification – using

diff-terms
• Running example

X

OutSys(A)

X

OutSys(B)

• Is equivalent to one rule with a diff-term

X

OutSys(diff(A,B))

15 / 49

Approximating observational equivalence using mirroring

• Both systems contain the same rules modulo diff-terms

• Idea: assume that each rule simulates itself

• Mirrors each execution into the other system

• If the mirrors are valid executions, we have observational
equivalence (sound approximation)

• We represent executions using dependency graphs
• Computed via backwards constraint solving

16 / 49

Dependency graphs and mirrors

Bidder picks A, observer compares to public value A

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (B) K (A)

OutEnv (true)

• Dependency graph mirror for bidder choice B is invalid
• Adversary choices stay fixed, comparison is with A

17 / 49

Dependency graphs and mirrors

Bidder picks A, observer compares to public value A

OutSys(A)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

• Dependency graph mirror for bidder choice B is invalid
• Adversary choices stay fixed, comparison is with A

17 / 49

Dependency graphs and mirrors

Bidder picks B, observer compares to public value A

OutSys(B)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

• Dependency graph mirror for bidder choice B is invalid
• Adversary choices stay fixed, comparison is with A

17 / 49

Dependency graphs and mirrors

Bidder picks B, observer compares to public value A

OutSys(B)

OutSys(B)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

• Dependency graph mirror for bidder choice B is invalid
• Adversary choices stay fixed, comparison is with A

17 / 49

Dependency graphs and mirrors

Bidder picks B, observer compares to public value A

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

• Dependency graph mirror for bidder choice B is invalid
• Adversary choices stay fixed, comparison is with A

17 / 49

Dependency graphs and mirrors

Bidder picks B, observer compares to public value A

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (B) K (A)

OutEnv (true)

• Dependency graph mirror for bidder choice B is invalid
• Adversary choices stay fixed, comparison is with A

17 / 49

Dependency graphs and mirrors

Bidder picks B, observer compares to public value A

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (B) K (A)

OutEnv (true)

• Dependency graph mirror for bidder choice B is invalid
• Adversary choices stay fixed, comparison is with A

17 / 49

Dependency graphs and mirrors

Bidder picks B, observer compares to public value A

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (B) K (A)

OutEnv (true)

• Dependency graph mirror for bidder choice B is invalid
• Adversary choices stay fixed, comparison is with A

17 / 49

Invalid mirrors and attacks

Bidder picks A/B, observer compares to public value A

OutSys(A)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (B) K (A)

OutEnv (true)

• Counter example to observational equivalence of the given
systems

18 / 49

Invalid mirrors and attacks

Bidder picks A/B, observer compares to public value A

OutSys(A)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (B) K (A)

OutEnv (true)

• Counter example to observational equivalence of the given
systems

18 / 49

Invalid mirrors and attacks

Bidder picks A/B, observer compares to public value A

OutSys(A)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (A)

K (A)

InEnv (B) K (A)

OutEnv (true)

• Counter example to observational equivalence of the given
systems

18 / 49

Valid mirror

Observer compares system output to itself

OutSys(A)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (B)

K (B)

InEnv (B) K (B)

OutEnv (true)

• All mirrors need to be valid for observational equivalence

19 / 49

Valid mirror

Observer compares system output to itself

OutSys(A)

OutSys(A)

InEnv (A)

InEnv (A)

K (A)

InEnv (A) K (A)

OutEnv (true)

OutSys(B)

OutSys(B)

InEnv (B)

InEnv (B)

K (B)

InEnv (B) K (B)

OutEnv (true)

• All mirrors need to be valid for observational equivalence

19 / 49

Dependency graph equivalence

A diff-system is dependency graph equivalent if mirrors of all
dependency graphs rooted in any rule on both sides are valid.

• Sound but incomplete approximation

• Efficient and sufficient in practice

Input:

• Protocol specification

• Property: equivalence given two choices for some term(s)
• Example: random value vs expected value

Output:

• Yes, observational equivalent

• No, dependency graph with invalid mirror

• Non-termination possible

20 / 49

Dependency graph equivalence

A diff-system is dependency graph equivalent if mirrors of all
dependency graphs rooted in any rule on both sides are valid.

• Sound but incomplete approximation

• Efficient and sufficient in practice

Input:

• Protocol specification

• Property: equivalence given two choices for some term(s)
• Example: random value vs expected value

Output:

• Yes, observational equivalent

• No, dependency graph with invalid mirror

• Non-termination possible

20 / 49

Dependency graph equivalence

A diff-system is dependency graph equivalent if mirrors of all
dependency graphs rooted in any rule on both sides are valid.

• Sound but incomplete approximation

• Efficient and sufficient in practice

Input:

• Protocol specification

• Property: equivalence given two choices for some term(s)
• Example: random value vs expected value

Output:

• Yes, observational equivalent

• No, dependency graph with invalid mirror

• Non-termination possible

20 / 49

Why Tamarin?

Approach implemented in the Tamarin tool:

• Tamarin supports verification with:
• equational theories (DH), induction, loops, mutable state

• Security protocol model is based on rewriting

• Restricted First-Order Logic for security properties

• Equational theories modeling algebraic properties of
cryptographic primitives

• Constraint-solving algorithm for analysis of unbounded
number of sessions

• Performance good despite undecidability

• Interactive and fully automatic modes

• Parallelized for multi-core performance

21 / 49

Verifying observational equivalence in Tamarin

Implemented algorithm:

• Extended constraint solving

• (Normal) dependency graphs
• Important for state space reduction and termination

• Equivalence of dependency graphs by mirroring

• Convergent equational theories to deal with blind
signatures, trapdoor commitments and other complex
primitives

22 / 49

Plan

1 Introduction

2 Defining Observational Equivalence

3 Verifying Observational Equivalence

4 Applications
Chaum’s e-cash protocol
FOO e-voting protocol
Okamoto’s e-voting protocol
Other examples

5 Conclusion

23 / 49

Plan

1 Introduction

2 Defining Observational Equivalence

3 Verifying Observational Equivalence

4 Applications
Chaum’s e-cash protocol
FOO e-voting protocol
Okamoto’s e-voting protocol
Other examples

5 Conclusion

24 / 49

(Electronic) Cash

Electronic Cash = digital equivalent

25 / 49

(Electronic) Cash

Electronic Cash = digital equivalent

25 / 49

(E-)Cash: Players and Phases

Bank

Client Seller

1. Withdrawal

2. Payment

3. Deposit

26 / 49

(E-)Cash: Players and Phases

Bank

Client Seller

1. Withdrawal

2. Payment

3. Deposit

26 / 49

(E-)Cash: Players and Phases

Bank

Client Seller

1. Withdrawal

2. Payment

3. Deposit

26 / 49

(E-)Cash: Players and Phases

Bank

Client Seller

1. Withdrawal

2. Payment

3. Deposit

26 / 49

Security properties of physical cash

• Unforgeability: Only the bank can create coins (trace
property).

• Anonymity: Nobody can distinguish which client makes a
payment (equivalence property).

• Untraceability: Nobody is able to decide whether two
payments were made by the same client (equivalence
property).

• Do they really hold?

27 / 49

Security properties of physical cash

• Unforgeability: Only the bank can create coins (trace
property).

• Anonymity: Nobody can distinguish which client makes a
payment (equivalence property).

• Untraceability: Nobody is able to decide whether two
payments were made by the same client (equivalence
property).

• Do they really hold?

27 / 49

Electronic Cash vs. Electronic Payments

⇒ No anonymity and unlinkability!

28 / 49

Electronic Cash vs. Electronic Payments

⇒ No anonymity and unlinkability!
28 / 49

Anonymity

Nobody can distinguish which client makes a payment.

Definition:
Observational equivalence of two instances:

Instance 1 Instance 2

Withdraw ,
Spend

Withdraw

≈l

Withdraw

Withdraw ,
Spend

Note that the bank and the seller are corrupted.

29 / 49

Anonymity

Nobody can distinguish which client makes a payment.

Definition:
Observational equivalence of two instances:

Instance 1 Instance 2

Withdraw ,
Spend

Withdraw

≈l

Withdraw

Withdraw ,
Spend

Note that the bank and the seller are corrupted.

29 / 49

Unlinkability

Nobody is able to decide whether two payments were made by the same
client:

Withdraw
Spend

Withdraw
Spend

Withdraw
Withdraw

Spend

≈l

Withdraw
Spend

Withdraw

Withdraw
Spend

Withdraw
Spend

30 / 49

Chaum’s On-Line Protocol

First on-line E-Cash protocol [Cha82] using

• blind signatures:
unblind(sign(blind(x , r), k), r) = sign(x , k)

• on-line verification by the bank to prevent double spending

Goal: ensure

• unforgeability

• anonymity

• unlinkability

in presence of dishonest

• banks

• sellers

• clients

31 / 49

Withdrawal Phase

; b = blind(x , r)

s = sign(b, sk)

1. Verify signature s
2. Compute y = unblind(s, r) = sign(x , sk)

3. Coin = (x , y) = (x , sign(x , sk))

32 / 49

Withdrawal Phase

; b = blind(x , r)

s = sign(b, sk)

1. Verify signature s
2. Compute y = unblind(s, r) = sign(x , sk)

3. Coin = (x , y) = (x , sign(x , sk))

32 / 49

Withdrawal Phase

; b = blind(x , r)

s = sign(b, sk)

1. Verify signature s
2. Compute y = unblind(s, r) = sign(x , sk)

3. Coin = (x , y) = (x , sign(x , sk))

32 / 49

Payment and Deposit Phase

= (x , sign(x , sk))

Verify signature

= (x , sign(x , sk))

1. Verify signature
2. Check if deposited

OK
OK

33 / 49

Payment and Deposit Phase

= (x , sign(x , sk))

Verify signature

= (x , sign(x , sk))

1. Verify signature
2. Check if deposited

OK
OK

33 / 49

Payment and Deposit Phase

= (x , sign(x , sk))

Verify signature

= (x , sign(x , sk))

1. Verify signature
2. Check if deposited

OK
OK

33 / 49

Payment and Deposit Phase

= (x , sign(x , sk))

Verify signature

= (x , sign(x , sk))

1. Verify signature
2. Check if deposited

OK
OK

33 / 49

Payment and Deposit Phase

= (x , sign(x , sk))

Verify signature

= (x , sign(x , sk))

1. Verify signature
2. Check if deposited

OK

OK

33 / 49

Payment and Deposit Phase

= (x , sign(x , sk))

Verify signature

= (x , sign(x , sk))

1. Verify signature
2. Check if deposited

OK
OK

33 / 49

Results

Formal Verification with Tamarin:

Property Result Time

Unforgeability X < 1 s

Weak Anonymity X 7.6 s

Strong Anonymity X 1 m 13.7 s

34 / 49

Plan

1 Introduction

2 Defining Observational Equivalence

3 Verifying Observational Equivalence

4 Applications
Chaum’s e-cash protocol
FOO e-voting protocol
Okamoto’s e-voting protocol
Other examples

5 Conclusion

35 / 49

Protocol by Fujioka, Okamoto and Ohta [FOO92]

The protocol uses

• blind signatures:
unblind(sign(blind(x , r), k), r) = sign(x , k)

• commitments: open(commit(v , r), r) = v

to ensure:

• eligibility (trace property)
• vote privacy (equivalence property)

It runs in three phases:

• Eligibility Check
• Voting
• Counting

Authorities:

• Administrator
• Collector

Assumptions:

• Anonymous channel to the collector
36 / 49

Eligibility Check

Bob Administrator

sign(blind(commit(, rB1), rB2), sk),

Verify signature & eligibility

sign(blind(commit(, rB1), rB2), sk)

Verify signature and unblind:

sign(commit(, rB1), sk)

37 / 49

Eligibility Check

Bob Administrator

sign(blind(commit(, rB1), rB2), sk),

Verify signature & eligibility

sign(blind(commit(, rB1), rB2), sk)

Verify signature and unblind:

sign(commit(, rB1), sk)

37 / 49

Eligibility Check

Bob Administrator

sign(blind(commit(, rB1), rB2), sk),

Verify signature & eligibility

sign(blind(commit(, rB1), rB2), sk)

Verify signature and unblind:

sign(commit(, rB1), sk)

37 / 49

Eligibility Check

Bob Administrator

sign(blind(commit(, rB1), rB2), sk),

Verify signature & eligibility

sign(blind(commit(, rB1), rB2), sk)

Verify signature and unblind:

sign(commit(, rB1), sk)

37 / 49

Eligibility Check

Bob Administrator

sign(blind(commit(, rB1), rB2), sk),

Verify signature & eligibility

sign(blind(commit(, rB1), rB2), sk)

Verify signature and unblind:

sign(commit(, rB1), sk)

37 / 49

Voting Phase

Alice

Bob

Collector

sign(commit(, rA1), sk)

sign(commit(, rB1), sk)

38 / 49

Voting Phase

Alice

Bob

Collector
sign(commit(, rA1), sk)

sign(commit(, rB1), sk)

38 / 49

Voting Phase

Alice

Bob

Collector

sign(commit(, rA1), sk)

sign(commit(, rB1), sk)

38 / 49

Counting Phase

Alice

Bob

Collector

1: commit(, rB1)

2: commit(, rA1)

2: rA1

1: rB1

39 / 49

Counting Phase

Alice

Bob

Collector

1: commit(, rB1)

2: commit(, rA1)

2: rA1

1: rB1

39 / 49

Counting Phase

Alice

Bob

Collector

1: commit(, rB1)

2: commit(, rA1)

2: rA1

1: rB1

39 / 49

Counting Phase

Alice

Bob

Collector

1: commit(, rB1)

2: commit(, rA1)

2: rA1

1: rB1

39 / 49

Vote-Privacy

We define Vote-Privacy using observational equivalence between
two situations:

Instance 1 Instance 2

≈l

Analysis in Tamarin: FOO ensures Vote-Privacy and Eligibility.

40 / 49

Plan

1 Introduction

2 Defining Observational Equivalence

3 Verifying Observational Equivalence

4 Applications
Chaum’s e-cash protocol
FOO e-voting protocol
Okamoto’s e-voting protocol
Other examples

5 Conclusion

41 / 49

Receipt-Freeness

A protocol is Receipt-Free if a voter cannot construct a convincing
receipt that he voted for a certain candidate.

Instance 1 Instance 2

≈l

Secret Data Fake Data

42 / 49

Receipt-Freeness

A protocol is Receipt-Free if a voter cannot construct a convincing
receipt that he voted for a certain candidate.

Instance 1 Instance 2

≈l

Secret Data Fake Data

42 / 49

Protocol by Okamoto [Oka96]

FOO is not receipt-free: a voter can prove that he voted for a
certain candidate by revealing his key and his random values.

The protocol by Okamoto (an extension of FOO) addresses this
using trapdoor-commitments which can be opened differently
using a trapdoor:

• open(tdcommit(m, r , td), r) = m

• open(tdcommit(m1, r , td), f (m1, r , td ,m2)) = m2

• tdcommit(m2, f (m1, r , td ,m2), td) = tdcommit(m1, r , td)

• f (m1, f (m, r , td ,m1), td ,m2) = f (m, r , td ,m2)

Analysis in Tamarin: the protocol by Okamoto ensures Eligibility,
Vote-Privacy and Receipt-Freeness.

43 / 49

Plan

1 Introduction

2 Defining Observational Equivalence

3 Verifying Observational Equivalence

4 Applications
Chaum’s e-cash protocol
FOO e-voting protocol
Okamoto’s e-voting protocol
Other examples

5 Conclusion

44 / 49

Other Examples

• Signed Diffie-Hellman key exchange
• Special equational theory to model Diffie-Hellman

exponentiation
• Real-or-random secrecy of session key
• Needs manual guidance in one subcase
• Automatically completed proof in 2.5 minutes

• TPM Envelope
• Real-or-random secrecy
• Finds attack for deterministic encryption

• Despite previous proof wrt trace-based secrecy

• We recommend to use probabilistic encryption

45 / 49

Summary of case studies

Protocol Property Result Time
Chaum Unforgeability Verified 0.2s
Chaum Anonymity Verified 7.6s
Chaum Untraceability Verified 1m13.7s

FOO Eligibility Verified 10.3s
FOO Vote Privacy Verified 4m11.1s

Okamoto Eligibility Verified 8.4s
Okamoto Vote Privacy Verified 1m20.3s
Okamoto Receipt-Freeness Verified 13m35.8s

Signed DH Key Exchange RoR secrecy Verified manual

TPM Envelope RoR secrecy Attack 1.5 s

46 / 49

Plan

1 Introduction

2 Defining Observational Equivalence

3 Verifying Observational Equivalence

4 Applications
Chaum’s e-cash protocol
FOO e-voting protocol
Okamoto’s e-voting protocol
Other examples

5 Conclusion

47 / 49

Conclusions & Future Work

• Equivalence properties are necessary to specify complex
security properties

• Use sound approximation as equivalence is difficult to verify
• Resulting implementation in Tamarin is effective and

efficient, illustrated by many case studies:
• Chaum’s e-cash protocol: Anonymity and Unlinkability
• FOO e-voting protocol: Vote-Privacy
• Okamoto e-voting protocol: Receipt-Freeness
• Other examples: real-or-random key secrecy for Signed

Diffie-Hellman, TPM Envelope protocol, . . .

• High degree of automation
• Future work:

• Implement more precise approximation
• Protocols with loops: need invariants and induction
• Further case studies

• Signed Diffie-Hellman with Perfect Forward Secrecy
• NAXOS, authenticated key exchange with PFS

48 / 49

Thank you for your attention!

Questions?

jannik.dreier@loria.fr

Tamarin tool and all case studies available at:

http://tamarin-prover.github.io/

49 / 49

jannik.dreier@loria.fr
http://tamarin-prover.github.io/

Mart́ın Abadi and Bruno Blanchet.
Computer-Assisted Verification of a Protocol for Certified
Email.
Science of Computer Programming, 58(1–2):3–27, October
2005.
Special issue SAS’03.

Alessandro Armando, David Basin, Yohan Boichut, Yannick
Chevalier, Luca Compagna, Jorge Cuellar, Paul
Hankes Drielsma, Pierre-Cyrille Heám, Jacopo Mantovani,
Sebastian Mödersheim, David von Oheimb, Michaël
Rusinowitch, Judson Santiago, Mathieu Turuani, Luca Viganò,
and Laurent Vigneron.
The avispa tool for the automated validation of internet
security protocols and applications.
In Proceedings of the 17th International Conference on
Computer Aided Verification (CAV’05), pages 281–285, Berlin,
Heidelberg, 2005. Springer-Verlag.

49 / 49

David Bernhard, Véronique Cortier, Olivier Pereira, Ben
Smyth, and Bogdan Warinschi.
Adapting helios for provable ballot privacy.
In Proceedings of the 16th European Symposium on Research
in Computer Security (ESORICS’11), volume 6879 of LNCS,
pages 335–354, Leuven, Belgium, 2011. Springer.

David Basin, Jannik Dreier, and Ralf Sasse.
Automated Symbolic Proofs of Observational Equivalence.
In 22nd ACM SIGSAC Conference on Computer and
Communications Security (ACM CCS 2015), pages
1144–1155, Denver, United States, October 2015. ACM.

Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss,
Alfredo Pironti, and Pierre-Yves Strub.
Implementing tls with verified cryptographic security.
In Proceedings of the IEEE Symposium on Security and
Privacy (S&P’13), pages 445–459, 2013.

49 / 49

Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and
Santiago Zanella-Béguelin.
Computer-aided security proofs for the working cryptographer.
In Proceedings of the 31st Annual Cryptology Conference
(CRYPTO’11), volume 6841 of LNCS, pages 71–90, Santa
Barbara, CA, USA, 2011. Springer.

Gilles Barthe, Benjamin Grégoire, and Santiago
Zanella-Béguelin.
Formal certification of code-based cryptographic proofs.
In Proceedings of the 36th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL’09), pages 90–101. ACM, 2009.

Bruno Blanchet.
An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules.
In Proceedings of the 14th Computer Security Foundations
Workshop (CSFW’14), pages 82–96, Cape Breton, Nova
Scotia, Canada, June 2001. IEEE Computer Society.

49 / 49

Bruno Blanchet.
A computationally sound mechanized prover for security
protocols.
In Proceedings of the IEEE Symposium on Security and
Privacy (S&P’06), pages 140–154, Oakland, California, May
2006.

David Bernhard, Olivier Pereira, and Bogdan Warinschi.
How not to prove yourself: Pitfalls of the fiat-shamir heuristic
and applications to helios.
In Proceedings of the 18th International Conference on the
Theory and Application of Cryptology and Information
Security (ASIACRYPT’12), volume 7658 of LNCS, pages
626–643, Beijing, China, 2012. Springer.

Rohit Chadha, Ştefan Ciobâcă, and Steve Kremer.
Automated verification of equivalence properties of
cryptographic protocols.
In Proceedings of the 21st European Symposium on
Programming Languages and Systems (ESOP’12), volume

49 / 49

7211 of LNCS, pages 108–127, Tallinn, Estonia, 2012.
Springer.

Ştefan Ciobâcă, Stéphanie Delaune, and Steve Kremer.
Computing knowledge in security protocols under convergent
equational theories.
Journal of Automated Reasoning, 48(2):219–262, 2012.

David Chaum.
Blind signatures for untraceable payments.
In Advances in Cryptology: Proceedings of CRYPTO ’82,
pages 199–203. Plenum Press, 1982.

Cas J. F. Cremers.
The Scyther Tool: Verification, falsification, and analysis of
security protocols.
In Proceedings of the 20th International Conference on
Computer Aided Verification (CAV’08), volume 5123 of LNCS,
pages 414–418, Princeton, USA, 2008. Springer.

Stéphanie Delaune, Steve Kremer, and Graham Steel.

49 / 49

Formal security analysis of pkcs#11 and proprietary
extensions.
Journal of Computer Security, 18(6):1211–1245, 2010.

Cédric Fournet, Markulf Kohlweiss, and Pierre-Yves Strub.
Modular code-based cryptographic verification.
In Proceedings of the 18th ACM conference on Computer and
Communications Security (CCS’11), pages 341–350, New
York, NY, USA, 2011. ACM.

Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta.
A practical secret voting scheme for large scale elections.
In Proceedings of the Workshop on the Theory and
Application of Cryptographic Techniques (AUSCRYPT’92),
volume 718 of LNCS, pages 244–251. Springer Berlin /
Heidelberg, Gold Coast, Queensland, Australia, 1992.

Changhua He, Mukund Sundararajan, Anupam Datta, Ante
Derek, and John C. Mitchell.
A modular correctness proof of ieee 802.11i and tls.

49 / 49

In Proceedings of the 12th ACM Conference on Computer and
Communications Security (CCS’05), pages 2–15, Alexandria,
VA, USA, 2005. ACM.

Gavin Lowe.
Breaking and fixing the needham-schroeder public-key protocol
using fdr.
In Proceedings of the Second International Workshop on Tools
and Algorithms for Construction and Analysis of Systems
(TACAS’96), pages 147–166, London, UK, 1996.
Springer-Verlag.

Gavin Lowe.
Casper: A compiler for the analysis of security protocols.
Journal of Computer Security, 6(1-2):53–84, 1998.

Simon Meier, Benedikt Schmidt, Cas Cremers, and David A.
Basin.
The tamarin prover for the symbolic analysis of security
protocols.

49 / 49

In Proceedings of the 25th International Conference on
Computer Aided Verification (CAV’13), volume 8044 of LNCS,
pages 696–701, Saint Petersburg, Russia, 2013. Springer.

John C. Mitchell, Vitaly Shmatikov, and Ulrich Stern.
Finite-state analysis of ssl 3.0.
In Proceedings of the 7th USENIX Security Symposium, pages
16–16, Berkeley, CA, USA, 1998. USENIX Association.

Tatsuaki Okamoto.
An electronic voting scheme.
In Proceedings of the IFIP World Conference on IT Tools,
pages 21–30, 1996.

Ben Smyth and Veronique Cortier.
Attacking and fixing helios: An analysis of ballot secrecy.
In Proceedings of the 24th IEEE Computer Security
Foundations Symposium (CSF’11), pages 297–311. IEEE,
2011.

49 / 49

Benedikt Schmidt, Simon Meier, Cas J. F. Cremers, and
David A. Basin.
Automated analysis of diffie-hellman protocols and advanced
security properties.
In Proceedings of the 25th IEEE Computer Security
Foundations Symposium (CSF’12), pages 78–94, Cambridge,
MA, USA, 2012. IEEE.

50 / 49

TPM Envelope attack

#i : iequality[DiffIntrEquality()]

Alice2(~n, ~s) !AIK(~aik) In(sign(<'certpcr', h(<h(<'pcr0', ~n>), 'deny'>)>, ~aik))

#k : Alice3[Denied(~s),
 DiffProtoAlice3()]

#vk : coerce[!KU(sign(<'certkey', h(<h(<'pcr0', ~n>), 'obtain'>), pk(~sk)>, ~aik)),
 DiffIntrCoerce()]

#vf.1 : isend

Alice1(~n) Fr(~s) !AIK(~aik)
In(sign(<'certkey', h(<h(<'pcr0', ~n>), 'obtain'>), pk(~sk)>,
 ~aik)
)

#vr : Alice2[Secret(~s),
 DiffProtoAlice2()]

Out(aenc(~s, pk(~sk))) Alice2(~n, ~s) Alice2reveal(~s)

Alice2reveal(~s) Fr(~f)

#vr.5 : Challenge[Challenge(~s),
 DiffProtoChallenge()]

Out(~s)

#vk.1 : caenc[!KU(aenc(~s, pk(~sk))),
 DiffIntrConstrcaenc()]

Fr(~n) PCR('pcr0') PCR_Write('pcr0')

#vr.1 : Alice1[PCR_Write(h(<'pcr0', ~n>)),
 DiffProtoAlice1()]

PCR(h(<'pcr0', ~n>)) PCR_Write(h(<'pcr0', ~n>)) Alice1(~n)

PCR(h(<'pcr0', ~n>)) Fr(~sk) In('obtain')

#vr.4 : CreateLockedKey[PCR_Read(h(<'pcr0', ~n>)),
 DiffProtoCreateLockedKey()]

PCR(h(<'pcr0', ~n>)) !KeyTable(h(<h(<'pcr0', ~n>), 'obtain'>), ~sk) Out(pk(~sk))

PCR_Write(h(<'pcr0', ~n>)) PCR(h(<'pcr0', ~n>)) In('deny')

#vr.7 : PCR_Extend[PCR_Write(h(<h(<'pcr0', ~n>), 'deny'>)),
 DiffProtoPCR_Extend()]

PCR(h(<h(<'pcr0', ~n>), 'deny'>)) PCR_Write(h(<h(<'pcr0', ~n>), 'deny'>))

#vk.2 : coerce[!KU(~s),
 DiffIntrCoerce()]

Fr(~aik)

#vr.2 : PCR_Init[PCR_Init(),
 PCR_Write('pcr0'),
 DiffProtoPCR_Init()]

PCR('pcr0') PCR_Write('pcr0') !AIK(~aik) Out(pk(~aik))

!AIK(~aik) !KeyTable(h(<h(<'pcr0', ~n>), 'obtain'>), ~sk)

#vr.3 : PCR_CertKey[DiffProtoPCR_CertKey()]

Out(sign(<'certkey', h(<h(<'pcr0', ~n>), 'obtain'>), pk(~sk)>, ~aik))

PCR(h(<h(<'pcr0', ~n>), 'deny'>)) !AIK(~aik)

#vr.6 : PCR_Quote[PCR_Read(h(<h(<'pcr0', ~n>), 'deny'>)),
 DiffProtoPCR_Quote()]

Out(sign(<'certpcr', h(<h(<'pcr0', ~n>), 'deny'>)>,
 ~aik)
)

PCR(h(<h(<'pcr0', ~n>), 'deny'
 >)
)

#vk.3 : coerce[!KU(pk(~sk)),
 DiffIntrCoerce()]

#vk.4 : pub[!KU('obtain'),
 DiffIntrPubConstr()]

#vf.5 : isend

#vk.5 : coerce[!KU(sign(<'certpcr', h(<h(<'pcr0', ~n>), 'deny'>)>, ~aik)),
 DiffIntrCoerce()]

#vf.7 : isend

#vk.6 : pub[!KU('deny'),
 DiffIntrPubConstr()]

#vf.8 : isend

50 / 49

Related Work
APTE AKISS ProVerif ProVerifDH SPEC Maude-NPA Tamarin Extension

Unbounded sessions x x x x x
Mutable state x x x ? x x
Diffie-Hellman x x x x x x x
Definable crypto x x x x x x x
Verification x x x x x x x x
Obs. equiv. x x x x / x

• APTE, AKISS
• Limited to bounded number of sessions

• ProVerif
• No mutable state support
• DH support only without observational equivalence

• SPEC
• Fixed crypto primitives, bounded number of sessions

• StatVerif, SAPIC
• Support mutable state, but no observational equivalence

• Maude-NPA
• Creates synchronous product of two similar protocols
• Suffers from termination issues - only finds attacks

51 / 49

Observational equivalence - definition

Two sets of multiset rewrite rules SA and SB are observational
equivalent with respect to an environment Env (and interface IF)
if there is a relation between the initial states in SA ∪ IF ∪ Env
(left system) and SB ∪ IF ∪ Env (right system), and for all pairs of
states in that relation:

• If the left system can make a move with an environment or
interface rule, the right system can match it precisely

• Resulting states are in the relation

• If the left system can make a move with an SA rule, the right
system can match it, possibly using multiple steps

• resulting states are in the relation

The same holds in the other direction.

52 / 49

Algorithm

1: function Verify(S)
2: RU ← L(S) ∪ R(S) ∪ IF ∪ Env
3: while RU 6= ∅ do
4: choose r ∈ RU, RU ← (RU \ {r})
5: compute DG←dgraphs(r) by constraint solving
6: if ∃dg∈DG s.t. mirrors(dg) lacks ground instances
7: then return “potential attack found: ”, dg

8: return “verification successful”

53 / 49

Unforgeability

Only the bank can create coins.

Definition:
On every trace:

withdraw()

spend()

Withdraw

Spend

preceeded by distinct occurence

54 / 49

	Introduction
	Defining Observational Equivalence
	Verifying Observational Equivalence
	Applications
	Chaum's e-cash protocol
	FOO e-voting protocol
	Okamoto's e-voting protocol
	Other examples

	Conclusion
	Appendix

