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Delegating computation
• Cloud computing

– Businesses buy computing power from a service provider
• No need to provision and maintain hardware
• Pay for what you need, scalability
• Small devices outsourcing complex computing problems to 

larger servers
 Issue: correctness of result?

[www.psdgraphics.com][blog.fi-xifi.eu]



We run clusters so you don't have to....



High-performance as a service

[http://www-03.ibm.com/systems/platformcomputing/products/hpc/]



Azure example fares
Cores RAM Disk Sizes Price

1 0.75 GB 19 GB $0.02/hour
(~$15/month) 

1 1.75 GB 224 GB $0.08/hour
(~$60/month) 

2 3.5 GB 489 GB $0.16/hour
(~$119/month) 

4 7 GB 999 GB $0.32/hour
(~$238/month) 

8 14 GB 2,039 GB $0.64/hour
(~$476/month)

[https://azure.microsoft.com/en-us/pricing/details/cloud-services/]



To Cloud Or Not To Cloud?Musings On Costs and Viability
• [Chen, Sion 2011] 

– Home users (H), Small/Mid-size/Large Enterprises (S,M,L) 

– Savings = Cycles £ (CostLocal-CostCloud) – DataTransfer
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http://aws.amazon.com/agreement/        [Thaler]

• 10. Disclaimers: amazon elastic compute cloud
• THE SERVICE OFFERINGS ARE PROVIDED “AS IS.” 
• WE AND OUR AFFILIATES AND LICENSORS MAKE NO […] WARRANTY THAT THE SERVICE OFFERINGS OR THIRD PARTY CONTENT WILL BE UNINTERRUPTED, ERROR FREE OR FREE OF HARMFUL COMPONENTS, 
• OR THAT ANY CONTENT, INCLUDING YOUR CONTENT OR THE THIRD PARTY CONTENT, WILL BE SECURE OR NOT OTHERWISE LOST OR DAMAGED. 



https://cloud.google.com/terms/
• 12. Disclaimer: Google Compute Engine 
• NEITHER GOOGLE NOR ITS SUPPLIERS, WARRANTS THAT THE OPERATION OF THE SOFTWARE OR THE SERVICES WILL BE ERROR-FREE OR UNINTERRUPTED. 
• NEITHER THE SOFTWARE NOR THE SERVICES ARE DESIGNED, MANUFACTURED, OR INTENDED FOR HIGH RISK ACTIVITIES. 



Privately Verifiable (outsourced) computation
• Client (Verifier, Victor) sends

– a function F and an input x to the server
• The Server (Prover, Peggy) returns 

– y=F(x) and , a proof that y is correct

F, x
y=F(x), proof 

• Verifying , should take less time than computing F(x)
[blog.fi-xifi.eu] [www.psdgraphics.com]



Goals of verifiable computation
• Provide user with guarantee of correctness without requiring to perform full computation

– Ideally not much more than reading input/output
• Minimize extra effort required for cloud to provide correctness guarantee

– Ideally not much more than just solve the problem
• Achieve protocols:

– Secure against malicious clouds
– Lightweight in benign settings



To Cloud Or Not To Cloud?Viability of verifiability
• [Chen, Sion 2011] 

– Savings = Cycles £ (CostLocal-CostCloud) – DataTransfer

• Verifiability
Cycles £ CostLocal ¸ CyclesVerifier £ CostLocal +  CyclesProver £ CostCloud +  DataTransfer



Approaches
1. Strong assumptions on the cloud

– Replication: majority of responses have to be correct
– Trusted hardware

2. Minimal assumptions
– Interactive proofs:

• Generic approaches certifying the algorithm (if in NC)
[Goldwasser et al.’ 08 … Thaler et al.’13]

• Ad-hoc approaches certifying the result
– Amortized systems (homomorphic cryptography) [Gentry et al.’13]

3. Using 2 or more clouds
– Refereed games: 1 cloud has to be honest
– Multi-prover interactive proofs: non-communicating clouds



Private verifiability in interactive proofs
• Prover P, Peggy
• Verifier V, Victor
• Peggy solves problem, tells Victor the answer

– Peggy and Victor have a conversation
– Peggy’s goal: convince Victor of the correctness of her answer

• Requirements
1. Completeness: an honest P can convince V to accept
2. Soundness: V will catch lying P with high probability

• Secure even if P is computationally unbounded



A framework for generic verifications

[Walfish-Blumberg CACM2015]



A framework for generic verifications

[Walfish-Blumberg CACM2015]



Interactive protocol for problems in NC    
[Goldwasser, Kalai, Rothblum 2008]

• Construction based on Prob. Checkable Proofs (PCP)
• log-space uniform Boolean circuits CN with N inputs

– Prover
• Compresses levels of the evaluated circuit by a linear form
• Complexity: size(CN)O(1) (sometimes O(size(CN)) [Thaler 2012])

– Verifier
• performs a single Boolean zero-sum check on the levels
• Complexity: (N+depth(CN))¢log(N+size(CN))O(1)

• Our ad-hoc certificates are instead
– Independent of the computation  expose bugs in CN– Optimal prover complexity: best(N) + ±(best(N)) 
– Essentially optimal verifier complexity: N1+±(1)



Public/Private verifiability
• Private verifiability

– Client only has to be convinced
 Through the conversation

• Public verifiability
– Publication of the conversation is not sufficient
Server and Client could be in cahoots
 Must convince also external, independent, a posteriori, verifiers

• In some cases, automatic transform private  public
– [Fiat-Shamir 1986] 
 Requires cryptographic hardness assumptions



Public verifiability: Sparse matrix GL7d19
• [Elbaz-Vincent, Gangl, Soulé 2005] 

– K-theory conjectures   ranks of boundary matrices
• GL7d19: 1911130 £ 1955309 matrix

– 1050 CPU days: rank is 1033568
 Computed once in 2010 with LinBox …
 With a Monte-Carlo randomized algorithm …
… do you believe that this rank is correct?
We construct an easily checkable certificate (public verifiability)



Verification of linear system solving (LINSYS)
• Publicly & deterministically verifiable Victor ask for the solution to A . ? = b

– Peggy answers with the vector x
– Anybody can check whether Ax =?= b

• Computation costs O(n3)    (or O(n), with […LeGall’14])
• Communication is O(n) 
• Verification costs O(n2) 



Probabilistic verification
[Zippel-Schwarz 1979]
• 2 polynomials f, g with d°(f)·d°(g)·n

– Check equality of f and g?
– (g-f) has at most n roots
– Randomly select 2S
– If gf then P( g()-f() = 0 ) < 1-n/|S| 

[Freivalds 1979]
• 3 matrices A, B, C of dimensions m£k, k£n, m£n

– Check equality of AB and C?
– Randomly select v2Fn
– If ABC then P( A(Bv)-Cv = 0 ) < 1-1/|F|



Verifiability in practice?
4096x4096 MATMUL[Thaler 2012] MATMUL[FFlas-FFpack] LINSYS[FFlas-Ffpack]

Server time 364.61s 5.01s 4.08s
+certificate overhead 0.49s 0.00s 0.00s
Client time 9.86s [Freivalds]    0.05s [Freivalds] 0.02s

• Goldwasser et al.: linear time verifiers do exist
 Faster generic approach to date …
 Prover/Verifier time prohibitive, even with model restrictions

• Ad-hoc approach:
 Reduce to MATMUL/LINSOLVE …
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Certifying the rank of dense matrices over a field
• à la [Rūsiņš Freivalds 1979]

– Prover: exhibits P, L, U, Q
• complexity 2/3 n3 (or O(n))

– Verifier: Probabilistic check that A == PLUQ
• Check permutation and triangular matrices
• Check rank of U in linear time
• Random projection vector v

– check  A¢v – P¢(L¢(U¢(Q¢v))) == 0

 Overall Verifier Monte-Carlo complexity: O(n2)  



Non-singularity certificateof dense matrices over Z
• à la [Rūsiņš Freivalds 1979]

– Prover
• Exhibits P, L, U, Q ; all invertible
• Exhibits smallish prime p

– Verifier
• Random vector v

– checks  A¢v – P¢(L¢(U¢(Q¢v))) ´ 0 mod p
 Overall verifier Monte-Carlo bit complexity n2+±(1)

Rank of singular matrix? 
 Prime p is chosen by Peggy,
 Victor does not know whether p preserves the rank or not …



InteractiveRANK certificate of dense matrices over Z
1. Verifier– Randomly chooses smallish prime p
2. Prover– Exhibits P, L, U, Q s.t. rank(A)=rank(U) mod p 
3. Verifier– Random v and A¢v – P¢(L¢(U¢(Q¢v))) ´ 0 mod p
 Prover cannot choose a bad prime and time is optimal
 Verifier time is essentially optimal (better constant factor)
 Certificate is not checkable a posteriori anymore 

Bit complexity Prover Communications Verifier
RANK, DET Best known n+±(1) n2+±(1) n2+±(1)



Fiat-Shamir derandomization(random oracle model)RANK certificate of dense matrices over Z
1. Prover

– Computes p=NextPrime(CryptographicHASH(A))
– Exhibits P, L, U, Q s.t. rank(A)=rank(U) mod p 

2. Verifier
– Checks p=NextPrime(CryptographicHASH(A))
– Random v and A¢v – P¢(L¢(U¢(Q¢v))) ´ 0 mod p

Certificate is now checkable a posteriori
Bit complexity Prover Communications Verifier
RANK, DET Best known n+±(1) n2+±(1) n2+±(1)



Ad-hoc certificates
• “Mathematics is the art of reducing any problem to linear algebra”. ---William Stein 
• [Kaltofen, Nehrig, Saunders 2011]

– Reductions to MATMUL
– Prover 

• Sends all intermediate MATMUL
– Verifier reruns algorithm

• [Freivalds] check of intermediate 
MATMUL

 Like Verifier has an n2 MATMUL
Prover Communications Verifier
O(n) O(n2) O(n2)



Artin’s solution to Hilbert 17th Problem
• Exact certification of global optimality

– Prove: polynomial inequality 81,...,n f(1,...,n)¸g(1,...,n) ?
– via SOS: 9ui,vj 2 R[x1,…,xn], (f-g)  =  (i=1k ui2)/(j=1m vj2)
– 9, 2 R[x1,…,xn], (f-g)  ¢  ((x1,…,xn)T W2 (x1,…,xn)) = ((x1,…,xn)T W1 (x1,…,xn))
– W1,W20 2SZn£n symmetric positive semi-definite
– Entries in vectors , in are precisely terms occurring in ui,vj

• Verifier
– Checks Descartes’ rule of sign on certified CHARPOLYS of W1,W2
– Checks remultiplication of ui,vj is (f-g) 



CHARPOLY?
• [Kaltofen-Villard’04]  integer characteristic polynomial

– Best bit complexity bound exponent: +(1-)/(2-(2+)+2)
– =2.373,=0.303: CHARPOLY exponent is 2.695
– =3, =0: CHARPOLY exponent is 3.2
– =2, =0: CHARPOLY exponent is 2.5

 [KNS’11] CHARPOLY certificate verification in n2.5+±(1)

Bit complexity Prover Communications Verifier
CHARPOLY [KV] n+(1-)/(…) n2.5+±(1) n2.5+±(1)
CHARPOLY [KNS] n+1+±(1) n3+±(1) n2+±(1)



Reducing CHARPOLY verifierto interactive DET verifier

Bit complexity Prover Communications Verifier
CHARPOLY n+(1-)/(…) n2+±(1) n2+±(1)

[D., Kaltofen 2014]



Derandomized CHARPOLY verifierreduced to DET verifier

Bit complexity Prover Communications Verifier
CHARPOLY n+(1-)/(…) n2+±(1) n2+±(1)
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Sparse Matrices
• Matrix factorization are not viable anymore

– Ex: P,L,U,Q 

• Instead, matrix-vector product only is allowed
– Blackbox model: 1 m-v costs  operations

y Ay



Linear certificate for non-singularityof sparse matrices over F

• Soundness: suppose A is singular, then
–
– (System consistent  first of P-1 b is 0)  Probability < 1/p Prover Communications Verifier

SPARSE NONSING. Best known +2n +n



Breaking random oracleand integer factorization
• Fiat-Shamir heuristic with public hash function

– Prover
• Compute b = Hash(A) = Blum-Blum-ShubN(A)
• Solve Av=b, return v

– Verifier
• Compute b = Hash(A) = Blum-Blum-ShubN(A)
• Check Av =?= b

• If the matrix is singular, to break certificate
– Prover need to predict first entry of P-1 b is 0
– She can thus predict bits of b=Blum-Blum-ShubN(A) 
– She can thus factor N …



Interactive certified upper bound to the rank

• Precondition the matrix
– U, V structured and fast to apply
– then UAV has generic rank profile …
– … and (r+1)£(r+1) zero principal minor



Essentially optimal interactive certificate for the rank of sparse matrices
• Prover

Input: A and U,V s.t. UAV is generic rank profile
1. Certificate: Non-singularity of leading (U A V)r£rSolve this r£r system with any right-hand side
2. Certificate:        singularity of leading (U A V)(r+1)£(r+1)

Produce a (r+1) non-zero vector in the nullspace
• Verifier

– 2 matrix-vector products 2
– 2 products with structured U, V n1+±(1)
– 2 vector equality tests 2n

If =n1+±(1) Prover Communications Verifier
SPARSE RANK n2+±(1) 5n n1+±(1)

[D., Kaltofen 2014]



Extension to SPARSE RANK over Z

If =n1+±(1) Prover Communications Verifier
Z SPARSE RANK n2+±(1) n1+±(1) ¢ logkAk1+±(1) n1+±(1) ¢ logkAk1+±(1)



Direct SPARSE DETERMINANT certificate

Prover Communications Verifier
SPARSE DET 3W(n) +6n +19n



Family of certificates for SPARSE MINPOLY

Prover Communications Verifier
W(n)=O(n) O(n√) O(n√)

W(n)+O(√n) O(n√n) 2 + O(n√n)
W(n)+O(n2/3) O(n1+1/3) 4 + O(n1+1/3)
W(n)+o(W(n)) O(n1+1/ℓ) 2ℓ + O(n1+1/ℓ)

2W(n) O(n)  + O(n) 

[D., Kaltofen, Thomé, Villard 2015]
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REDUCTIONS



Open problems
• Sparse normal forms

– Linear time SPARSE verifier for SMITHFORM?
 normal form certificates in the sparse case?
 do not compute change of base matrices …

• Remove cryptographic computational hardness assumption
– For now, only n1.5+o(1) SPARSE DET verifier
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