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Delegating computation

e Cloud computing

— Businesses buy computing power from a service provider
* No need to provision and maintain hardware
« Pay for what you need, scalability
« Small devices outsourcing complex computing problems to
larger servers

= Issue: correctness of result?

[www.psdgraphics.com]

[blog.fi-xifi.eu]
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High-performance as a service
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Azure example fares

$0.02/hour
1 0.75 GB 19 GB
(~$15/month)
$0.08/hour
1 1.75 GB 224 GB
(~$60/month) .
HEl Microsoft
0.16/hour Azure
2 3.5 GB 489 GB ; B
(~$119/month)
[https://azure.microsoft.com/en-
$O . 3 2 / hOU r us/pricing/details/cloud-services/]
4 7 GB 999 GB
(~$238/month)
$0.64/hour
8 14 GB 2,039 GB

(~$476/month)



CPU cycle cost (picocent)
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To Cloud Or Not To Cloud?
Musings On Costs and Viability

[Chen, Sion 2011]

— Home users (H), Small/Mid-size/Large Enterprises (S,M,L)
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— Clouds offer no guarantee
— Interactive certificates

— Public/private verification
— Probabilistic verification

Certificates for Dense Matrices

Certificates for Sparse Matrices



http://aws.amazon.com/agreement/ [Thaler]

e 10. Disclaimers: amazon elastic compute cloud

amazon ., . .
webservices™ THE SERVICE OFFERINGS ARE PROVIDED "“AS IS.

WE AND OUR AFFILIATES AND LICENSORS MAKE NO
[...] WARRANTY THAT THE SERVICE OFFERINGS OR
THIRD PARTY CONTENT WILL BE UNINTERRUPTED,
ERROR FREE OR FREE OF HARMFUL COMPONENTS,

OR THAT ANY CONTENT, INCLUDING YOUR CONTENT
Amazon EC2 OR THE THIRD PARTY CONTENT, WILL BE SECURE
OR NOT OTHERWISE LOST OR DAMAGED.



') Google Cloud Platform

Compute Storage Big Data/Analysis

.@9@@.9

ud Endpai

https://cloud.google.com/terms/

e 12. Disclaimer: Google Compute Engine

e NEITHER GOOGLE NOR ITS SUPPLIERS, WARRANTS
THAT THE OPERATION OF THE SOFTWARE OR THE
§ SERVICES WILL BE ERROR-FREE OR UNINTERRUPTED.

NEITHER THE SOFTWARE NOR THE SERVICES ARE
DESIGNED, MANUFACTURED, OR INTENDED FOR HIGH
RISK ACTIVITIES.



Privately Verifiable (outsourced) computation

e Client (Verifier, Victor) sends
— a function F and an input x to the server

e The Server (Prover, Peggy) returns
— y=F(x) and I, a proof that y is correct

 Verifying I1, should take less time than computing F(x)

[blog.fi-xifi.eu] [www.psdgraphics.com]



Goals of verifiable computation

Provide user with guarantee of correctness without
requiring to perform full computation
— Ideally not much more than reading input/output

Minimize extra effort required for cloud to provide
correctness guarantee
— Ideally not much more than just solve the problem

Achieve protocols:
— Secure against malicious clouds
— Lightweight in benign settings



CPU cycle cost (picocent)
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To Cloud Or Not To Cloud?
Viability of verifiability

[Chen, Sion 2011]
— Savings = Cycles x (Cost,,.,~Cost,,q) — DataTransfer
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Approaches

1. Strong assumptions on the cloud
—  Replication: majority of responses have to be correct
—  Trusted hardware

2. Minimal assumptions
— Interactive proofs:
. Generic approaches certifying the algorithm (if in NC)
[Goldwasser et al.” 08 ... Thaler et al.’13]
 Ad-hoc approaches certifying the result

—  Amortized systems (homomorphic cryptography) /Gentry et al.’13]

3. Using 2 or more clouds
— Refereed games: 1 cloud has to be honest
— Multi-prover interactive proofs: non-communicating clouds



Private verifiability in interactive proofs

e Prover P, Peggy
e \Verifier V, Victor

e Peggy solves problem, tells Victor the answer
— Peggy and Victor have a conversation
— Peggy’s goal: convince Victor of the correctness of her answer

e Requirements
1. Completeness: an honest P can convince V to accept
2. Soundness: V will catch lying P with high probability
 Secure even if P is computationally unbounded



A framework for generic verifications

verifier computation (p) prover
: ----------- ': FuSEsEs e s sE e E e
\ P ammmp circuit : input (x) P esmmp Circuit
b rw e e s wEw ]
— l@
output (] transcript

1o

encoded transeript

queries about
___________________ the encoded transcript;

. responses
' accept/reject — oot <p—>
b e msmesms s messsnsm 5 @

Framewaork in which a verifier can check that, for a computation p and desired input x, the prover's
purported output v is correct. Step 1: The verifier and prover compile p, which is expressed in a high-level
language (for example, C) into a Boolean circuit, C. Step 2: the prover executes the computation, obtaining
a transcript for the execution of C on x, Step 3: the prover encodes the transcript, to make it suitable for
efficient querying by the verifier. Step 4: the verifier probabilistically queries the encoded transcript; the
structure of this step varies among the protocols (for example, in some of the works, " explicit queries are
established before the protocol begins, and this step requires sending only the prover's responses).

[Walfish-Blumberg CACM2015]
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Interactive protocol for problems in NC
[Goldwasser, Kalai, Rothblum 2008]

e Construction based on Prob. Checkable Proofs (PCP)
e |og-space uniform Boolean circuits C, with N inputs

— Prover
« Compresses levels of the evaluated circuit by a linear form
« Complexity: size(Cy)°"  (sometimes O(size(Cy)) [Thaler 2012])
— Verifier
« performs a single Boolean zero-sum check on the levels
« Complexity: (N+depth(Cy))-log(N+size(Cy))°™

e QOur ad-hoc certificates are instead
— Independent of the computation = expose bugs in C,

— Optimal prover complexity: best(N) + o(best(N))
— Essentially optimal verifier complexity: N1*+o(1)



Public/Private verifiability

e Private verifiability
— Client only has to be convinced
= Through the conversation

e Public verifiability
— Publication of the conversation is not sufficient
& Server and Client could be in cahoots

%+ Must convince also external, independent, a posteriori, verifiers

e In some cases, automatic transform private - public
— [Fiat-Shamir 1986]
A\ Requires cryptographic hardness assumptions



Public verifiability: Sparse matrix GL7d19

o [Flbaz-Vincent, Gangl, Soule 2005]
— K-theory conjectures < ranks of boundary matrices

e GL7d19: 1911130 x 1955309 matrix
— 1050 CPU days: rank is 1033568

& Computed once in 2010 with LinBox ...
© With a Monte-Carlo randomized algorithm ...

= ... do you believe that this rank is correct?

= We construct an easily checkable certificate (public verifiability)



Verification of linear system solving (LINSYS)

o Publicly & deterministically verifiable Victor ask for
the solutionto A.?=Db

— Peggy answers with the vector x

— Anybody can check whether Ax =?=Db

e Computation costs O(n3) (or O(n®), with /..LeGalr14))
e Communication is O(n)

o Verification costs O(n?)



Probabilistic verification

[Zippel-Schwarz 1979]
e 2 polynomials f, g with d°(f)<d®(g)<n
— Check equality of f and g?

— (g-f) has at most n roots
— Randomly select AeS

— If g=f then P( g(A)-f(\) = 0 ) < 1-n/[S]|

[Freivalds 1979]
e 3 matrices A, B, C of dimensions mxk, kxn, mxn

— Check equality of AB and C?
— Randomly select veF"

— If AB=C then P( A(Bv)-Cv =0) < 1-1/|F]



Verifiability in practice?

MATMuUL MATMuUL LINSYS
F096x8096 [Thaler 2012] | [FFlas-FFpack] | [FFlas-Ffpack]

Server time 364.61s 5.01s 4.08s
+certificate overhead 0.49s 0.00s 0.00s
Client time 9.86s [Freivalds] 0.05s [Freivalds] 0.02s

e Goldwasser et al.: linear time verifiers do exist
© Faster generic approach to date ...
® Prover/Verifier time prohibitive, even with model restrictions

e Ad-hoc approach:
& Reduce to MATMUL/LINSOLVE ...
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Certifying the rank
of dense matrices over a field

e 4 la [Rusins Freivalds 1979]
— Prover: exhibits P, L, U, Q
» complexity 2,3 n° (or O(n®))

— Verifier: Probabilistic check that A == PLUQ
* Check permutation and triangular matrices
* Check rank of U in linear time

 Random projection vector v
—check A.v—P-(L-(U-(Q-v))) ==

© Overall Verifier Monte-Carlo complexity: O(n?)



Non-singularity certificate
of dense matrices over 7

e ala[Risins Freivalds 1979]
— Prover
« Exhibits P, L, U, Q ; all invertible
« Exhibits smallish prime p

— Verifier
e Random vector v
— checks A.v—-P-(L-(U-(Q-v))) =0mod p

© Overall verifier Monte-Carlo bit complexity n*(1)

A Rank of singular matrix?

N Prime p is chosen by Peggy,
N Victor does not know whether p preserves the rank or not ...



Interactive
RANK certificate of dense matrices over 7

1. Verifier

— Randomly chooses smallish prime p
2. Prover

— Exhibits P, L, U, Q s.t. rank(A)=rank(U) mod p
3. \Verifier

— Random v and A.v — P-(L-(U-(Q-v))) = 0 mod p

© Prover cannot choose a bad prime and time is optimal
© Verifier time is essentially optimal (better constant factor)

N Certificate is not checkable a posteriori anymore

ooy Communications| |

RANK, DET Best known n®+o(1) n2t+o(1) n2+o(1)



Fiat-Shamir derandomization

(random oracle model)
RANK certificate of dense matrices over 7

1. Prover
— Computes p=NextPrime(CryptographicHASH(A))
— Exhibits P, L, U, Q s.t. rank(A)=rank(U) mod p

2. Verifier

— Checks p=NextPrime(CryptographicHASH(A))
— Random v and A.v — P.(L-(U-(Q-v))) =0 mod p

© Certificate is now checkable a posteriori

ooy Communications| |

RANK, DET Best known n®+o(1) n2t+o(1) n2+o(1)



Ad-hoc certificates

o "Mathematics is the art of reducing
any problem to linear algebra”. ---
William Stein

Prover Verifier
o [Kaltofen, Nehrig, Saunders 2011] c
— Reductions to MATMUL C1=A1B1 15 check C1
— Prover
. .S.ends all mtermec?late MATMuUL Co=A2B> C2 > check Co
— Verifier reruns algorithm
» [Freivalds] check of intermediate c
MATMUL C3=A3B3 3 > check C3
& Like Verifier has an n2 MATMuL

O(n®) O(n2) O(n?)



Artin’s solution to Hilbert 17th Problem

o Exact certification of global optimality

— Prove: polynomial inequality V¢;,...,&, f(&y,e-,80)>9(Ey,-,Ep) ?
— via SOS: 3Ju,v; € R[Xy,...,.X,], (f-g) = (ZicfuA/ (X1 vi?)
— Ju,v € R[Xy,...,X,],

(f-g) - ((Xgyeee X)) TWL 1(Xy,ee0X,)) = (V(Xqyee X )T W, V(X X))

- W, W.,=0 eSZ" symmetric positive semi-definite
— Entries in vectors p,v in are precisely terms occurring in u,v;

e Verifier
— Checks Descartes’ rule of sign on certified CHARPOLYS of W, W,
— Checks remultiplication of u;,v;is (f-g)



CHARPOLY?

o [Kaltofen-Villard'04] integer characteristic polynomial
— Best bit complexity bound exponent: o+(1-€)/(w?-(2+0)w+2)
— ©=2.373,£=0.303: CHARPOLY exponent is 2.695
— =3, £=0: CHARPOLY exponent is 3.2
— ®=2, {=0: CHARPOLY exponent is 2.5

= [kNS’11] CHARPOLY certificate verification in n2->+o(1)

oy . Communications| |

CHARPOLY [KV] n0)+(1-§)/(...) n2.5+o(1) n2.5+o(1)
CHARPOLY /kns] no+l+o(1) n3+o(1) n2+o(1)



Reducing CHARPOLY verifier
to interactive DET verifier

Peggy Victor
Input A e Znxn
: 1: g(X) ?
Commitment g € Z[X] = charpoly g degree(g) = n
Challenge 2: A AEZ
_ B 3: @ k4
Response 0 € Z =det(Al — A) 0 = g(A)

4 . CDet

Cpes : Cert(§ = det(M — A)) § = det(\ — A)

[D., Kaltofen 2014]

. | Communications |

CHARPOLY noo+(1-§)/(...) n2+o(1) n2+o(1)



Derandomized CHARPOLY verifier
reduced to DET verifier

Peggy Aeznxn Victor
g € Z[X] = charpoly 4 9(X)
A= HASH(A,g) A
§ € 7 = det(\ — A) 0
Cpet : Cert(6 = det(N — A)) CDet degree(g) Ly

?

\ = HASH(A, g)
7

§ = det(\ — A)

5= g(N)

. | Communications |

CHARPOLY nu)+(1-§)/(...) n2+o(1) n2+o(1)
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Sparse Matrices

e Matrix factorlzatlon are not viable anymore

o Instead, matrix-vector product only is allowed
— Blackbox model: 1 m-v costs u operations

EaVAR

2,




Linear certificate for non-singularity
of sparse matrices over [F

Peggy A sparse Victor

pL nonzero

1 : non-singular

2:0b b c F»

ve " 3 v Av;b

e Soundness: suppose A is singular then

. Communications _

SPARSE NONSING.  Best known u+2n u+



Breaking random oracle
and integer factorization

o Fiat-Shamir heuristic with public hash function
— Prover
« Compute b = Hash(A) = Blum-Blum-Shub(A)
« Solve Av=Db, return v
— Verifier
« Compute b = Hash(A) = Blum-Blum-Shub(A)
« Check Av =7?=D

o If the matrix is singular, to break certificate

— Prover need to predict first entry of P1bis 0
— She can thus predict bits of b=Blum-Blum-Shuby(A)
— She can thus factor N ...



Interactive certified upper bound to the rank

Peggy Victor

Input A € Fmxn

Commitment rank(A) <r < min{m,n} 1. r
Cha/llenge 2 U) V U G IB’)‘;;LXTTL’ V E IBTSLVXTL’ S C F
: ?
Response weFrT1l£0 3: w w % O

e Precondition the matrix
— U, V structured and fast to apply

— then UAV has generic rank profile ...
— ... and (r+1)x(r+1) zero principal minor



Essentially optimal interactive certificate
for the rank of sparse matrices

e Prover

Input: A and U,V s.t. UAV is generic rank profile

1. Certificate: Non-singularity of leading (U A V).,
= Solve this rxr system with any right-hand side

2. Certificate: singularity of leading (U A V), 1yxr+1)
= Produce a (r+1) non-zero vector in the nullspace

e Verifier
— 2 matrix-vector products 21
— 2 products with structured U, V n1+o(1)

— 2 vector equality tests
[D., Kaltofen 2014]

Fu=ni=  Prover LI ~ Verifier

SPARSE RANK n2+o(1) nit+o(1)



Extension to SPARSE RANK over 7

Peggy A e zmxn Victor
r = rank(A) 1: 7
21 bl ¥

p prime O ((m 4 n)l"‘o(l))

UeB"™V eBY", be Zipz"

rank certif. mod p NonSing & UpperRank mod p

Az € ZJpz via (Ax € Z) mod p

L . Communications | .

Z, SPARSE RANK n2+o(1) ni+e(1). |og||Al1+e®) nit+e() . |og|Al|1+e@)



Direct SPARSE DETERMINANT certificate

Prover Commununications Verifier
B=AT(s) LSy Checks t"4+s#0
cB(N)

cB(\) = det(A\], — B)
C = [bijli<ij<n—1

C(N\) = det(M,—1 — C) ey

B 1,C
KB hC € F[A]: hBeB + hCcC = 1 W2 R, Checks GCD(cB(M), cC(\)) = 1
t,s € F also s.t. GCD(cP(\),c“(N\) =1 in F[A\] by checking at «
hB(a)cB(a) + hC(a)c(a) =1

Computes u such that ¢ r re S CF arandom element
0

(rl, — B)u =el® = O U ) Checks (I, — B)u = el
1 uncB(r) = c€(r)

Computes det(A) = cP(0)/(t" + s)

| Communications .

SPARSE DET 3W(n) u+6n u+19n



Family of certificates for SPARSE MINPOLY

[D., Kaltofen, Thomé, Villard 2015]

W(n)=0(un) O(nV) O(nV)
W(n)+0O(uvn) O(nvn) 2u + O(nvn)
W(n)+0O(un3) O(ni+1/3) 4u + O(ni+1/3)
W(n)+o(W(n)) O(ni+1/h) 2'u + O(ni+1)

2W(n) O(n) u + O(n)
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[GLOBAL OPTIMIZATION(Q)]

[Artin'27]

REDUCTIONS !

(S UM-OF-SQUARES(Q)]

[KNS'11]
A4

[SIGNATURE(Q)]

[Descartes 1627]

Y

(CHARPOLY(Q)J
[NORMALFORM(Q)] E [DK'14]
| RANK(Q) v DET(Q)
: : -
4 ! [ ] :
NORMALFORM(F) v DK'14 v
[w. change of base] l RANK(F) ' (DET) RANK(F)
[KNS'11] Rank(U) Det(U
[Wiedemann'86] !
Y Y

@@ [MINPOLY(IF)] [DK'14]

[DKV'15]

P L-U-Q . [Wiedemann'86]
\d 4
MM(FF) (KryLovSeq(F))
[Freivalds'79] [DKT'15]

Y

(MarVecMuL(F)) (MaTVECMUL(F)]




Open problems

e Sparse normal forms
— Linear time SPARSE verifier for SMITHFORM?
= normal form certificates in the sparse case?
= do not compute change of base matrices ...

e Remove cryptographic computational hardness
assumption
— For now, only ni->+o(1) SpaARSE DET verifier
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