Contents

Background

Identity-based Cryptosystem

Identity-based Signature

Conclusion

Key Escrow free Identity-based Cryptosystem

Manik Lal Das

DA-IICT, Gandhinagar, India

About DA-IICT and Our Group

Contents

Background

Identity-based Cryptosystem

Identity-base Signature

Conclusion

DA-IICT is a private university, located in capital of Gujarat state in India. DA-IICT offers undergraduate and postgraduate programs in Information and Communication Technology.

About DA-IICT and Our Group

Contents

Background

Identity-based

Identity-based Signature

Outline

Contents

Background

Identity-based Cryptosystem

Identity-base Signature

- Background
- 2 Identity-based Cryptosystem
- **3** Identity-based Signature
- 4 Conclusion

Authentication

Contents

Background

ldentity-based Cryptosystem

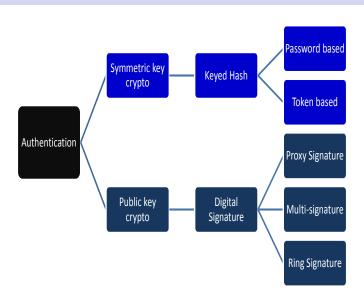
Identity-based Signature

Conclusion

What is Authentication?

Authentication is a process of confirming the

- (i) identity of an entity (entity authentication); and/or
- (ii) legitimacy of a document (data origin authentication).


Authentication Techniques

Contents

Background

Identity-based

Identity-based

Contents

Background

Identity-based Cryptosystem

Identity-based

Conclusion

A Cryptosystem is a 3-tuple (Key Generation, Encryption, Decryption) algorithm defined as:

Content

Background

Identity-based Cryptosystem

Identity-based Signature

Conclusion

A Cryptosystem is a 3-tuple (Key Generation, Encryption, Decryption) algorithm defined as:

Key Generation

INPUT: a security parameter.

OUTPUT: key(s) and public parameters.

Contents

Background

ldentity-based Cryptosystem

Identity-based Signature

Conclusion

A Cryptosystem is a 3-tuple (Key Generation, Encryption, Decryption) algorithm defined as:

Key Generation

INPUT: a security parameter.

OUTPUT: key(s) and public parameters.

Encryption

INPUT: key, message, public parameters.

OUTPUT: ciphertext.

A Cryptosystem is a 3-tuple (Key Generation, Encryption, Decryption) algorithm defined as:

Key Generation

INPUT: a security parameter.

OUTPUT: key(s) and public parameters.

Encryption

INPUT: key, message, public parameters.

OUTPUT: ciphertext.

Decryption

INPUT: key, ciphertext, public parameters.

OUTPUT: message.

Background

A Cryptosystem is a 3-tuple (Key Generation, Encryption, Decryption) algorithm defined as:

Background

Dackground

Cryptosystem

Signature

216114141

Key Generation

INPUT: a security parameter.

OUTPUT: key(s) and public parameters.

Encryption

INPUT: key, message, public parameters.

OUTPUT: ciphertext.

Decryption

INPUT: key, ciphertext, public parameters.

OUTPUT: message.

Domain: Key space; Message space; Ciphertext space

Cryptosystem (contd.)

Contents

Background

Identity-based Cryptosystem

Signature

Conclusion

Symmetric key cryptosystem: One key is used for encryption and decryption.

Limitation: Secret key distribution.

Asymmetric key cryptosystem: Two keys are used for encryption (public key) and decryption (private key)

Limitation: Public key management.

Identity-based Cryptosystem

Contents

Background

Identity-based Cryptosystem

Signature

Conclusion

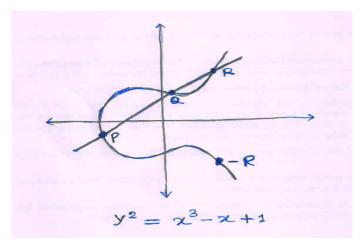
Public key is the user's identity or derived from the user's identity (e.g. email).

- User identity acts as the public key.
- Aim is to eliminate infrastructure for public key certification.

A. Shamir. Identity-based cryptosystems and signature schemes.In Proc. of Advances in Cryptology-CRYPTO'84, LNCS 196, Springer-Verlag, pp. 47-53, 1984.

IEEE Standard for identity-based cryptographic techniques using pairings - 1363.3 (2013).

Interesting Properties of Elliptic Curve


Let $y^2 = x^3 + ax + b$ be an elliptic curve that forms an elliptic curve group, where $a, b \in F_q$ for a large prime q.

Contents

ackground

Identity-based Cryptosystem

Identity-based Signature

Bilinear Pairing

Contents

Background

Identity-based Cryptosystem

Signature

Conclusio

Let G_1 be an additive group of order a prime q, P be a generator of G_1 , and G_2 be a multiplicative group of order prime q.

A bilinear pairing is a map $e: G_1 \times G_1 \to G_2$ that satisfies the following properties.

Properties of Bilinear Pairing

- 1) $e(aP,bQ)=e(P,Q)^{ab}$, for all $P,Q\in G_1$ and $a,b\in Z_q^*$.
- 2) There exist $P, Q \in G_1$ such that $e(P, Q) \neq 1$.
- 3) There exists an efficient algorithm to compute e(P, Q).

Computational Hardness Assumptions

Elliptic curve discrete logarithm problem

Given P, Q(= xP), finding x is computationally infeasible.

Computational Diffie-Hellman problem

Given P, aP, bP, finding abP is computationally infeasible.

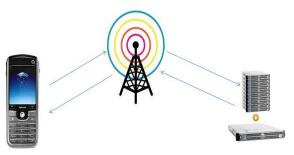
There are many other variants...

Background

Identity-based Cryptosystem

Identity-base Signature

Pairing-based Authenticated Key Exchange+


Rackground

Identity-based Cryptosystem

Identity-base Signature

Conclusion

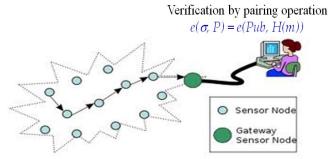
Scenario: Mobile communications

Signature by scalar multiplication $\sigma = s.H(m)$

Verification by pairing operation $e(\sigma, P) = e(Pub, H(m))$

Pairing-based Authenticated Key Exchange+

Scenario: Wireless Sensor Networks


contents

Background

Identity-based Cryptosystem

Identity-base

Conclusion

Signature by scalar multiplication $\sigma = s.H(m)$

Contents

Background

Identity-based Cryptosystem

Identity-based Signature

Conclusion

IDS is defined by the 4-tuple (Setup, KeyGen, Sign, Verify)

Content

Background

Identity-based Cryptosystem

Identity-based Signature

Conclusion

IDS is defined by the 4-tuple (Setup, KeyGen, Sign, Verify)

System keys \leftarrow Setup(1^k)

Inputs a security parameter k; Outputs system secret and public keys.

Content

Background

Identity-based Cryptosystem

Identity-based Signature

Conclusion

IDS is defined by the 4-tuple (Setup, KeyGen, Sign, Verify)

 $\mathsf{System} \ \mathsf{keys} \leftarrow \mathsf{Setup}(1^k)$

Inputs a security parameter k; Outputs system secret and public keys.

User private key ← KeyGen(user ID, system keys)

Inputs user ID; Outputs user private key.

Contents

Background

Identity-based Cryptosystem

Identity-based Signature

Conclusion

IDS is defined by the 4-tuple (Setup, KeyGen, Sign, Verify)

System keys \leftarrow Setup(1^k)

Inputs a security parameter k; Outputs system secret and public keys.

User private key ← KeyGen(user ID, system keys)

Inputs user ID; Outputs user private key.

$\sigma \leftarrow \mathsf{Sign}(m, \mathsf{user} \mathsf{private} \mathsf{key}, \mathsf{public} \mathsf{parameter})$

Inputs message m and user private key; Outputs signature σ .

IDS is defined by the 4-tuple (Setup, KeyGen, Sign, Verify)

System keys \leftarrow Setup(1^k)

Inputs a security parameter *k*; Outputs system secret and public keys.

User private key \leftarrow KeyGen(user ID, system keys)

Inputs user ID; Outputs user private key.

$\sigma \leftarrow \mathsf{Sign}(m, \mathsf{user} \mathsf{private} \mathsf{key}, \mathsf{public} \mathsf{parameter})$

Inputs message m and user private key; Outputs signature σ .

Accept/Reject \leftarrow Verify(user ID, m, σ , public parameter)

Inputs signature σ , message m, user ID, public parameters; Outputs Accept or Reject.

Contonto

Backgroun

Cryptosystem

Identity-based Signature

Contents

Background

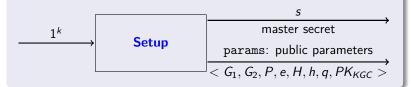
Identity-based Cryptosystem

Identity-based Signature

Conclusion

System keys \leftarrow Setup(1^k)

 G_1 is an additive group of order prime q;


 G_2 is a multiplicative group of order prime q;

P is a generator of G_1 ;

 $e: G_1 \times G_1 \rightarrow G_2$ is a bilinear map;

H, h are cryptographic hash function.

The system selects $s \in Z_q^*$ as the **master secret key** and computes its **public key** $PK_{KGC} = s \cdot P$. The KGC publishes the public parameters params $= \langle G_1, G_2, P, e, H, h, q, PK_{KGC} \rangle$.

Contents

Background

Identity-based Cryptosystem

Identity-based Signature

Conclusion

$SK_U \leftarrow \mathbf{KeyGen(params}, s, ID_U)$

KGC generates user private key $SK_U = s.PK_U$, where user public key $PK_U = H(ID_U)$.

KGC sends the private key SK_{IJ} to the user securely.

Problems in user private key generation

ontents

ackgroun

Identity-based Cryptosystem

Identity-based Signature

Conclusion

KGC generates user private key and sends it to the user securely.

- (1) User's private key is known to the KGC
 - ⇒ Key-escrow problem.

(2) Sending user private key requires **secure channel**.

Proposed Solution:

Binding-Blinding Technique

Contents

Background

Identity-based Cryptosystem

Identity-based Signature

Conclusion

 User chooses two secret blinding factors, calculates the binding parameters and sends the parameters to the KGC over a public channel for his partial key.

- KGC gets a confirmation from the user about his request for the partial key, and then KGC proceeds to the next step.
- After validating the user's binding parameters, the KGC computes user partial key and sends it to the user over a public channel.

Proposed Solution:

Binding-Blinding Technique

Contents

Background

Identity-based Cryptosystem

Identity-based Signature

Conclusion

 User chooses two secret blinding factors, calculates the binding parameters and sends the parameters to the KGC over a public channel for his partial key.

- KGC gets a confirmation from the user about his request for the partial key, and then KGC proceeds to the next step.
- After validating the user's binding parameters, the KGC computes user partial key and sends it to the user over a public channel.

No key escrow and no secure channel for user private key generation.

Binding parameters with user secret blinding factor.

Binding Parameters \leftarrow KeyGen(params, ID_U , a, b)

User selects secret blinding factors $a, b \in Z_q^*$ and computes $X = a \cdot PK_U$, $Y = a \cdot b \cdot PK_U$, $Z = b \cdot P$, $W = a \cdot b \cdot P$.

User sends the binding parameters (X, Y, Z, W, ID_U) to KGC over a public channel.

Background

Identity-based Cryptosystem

Identity-based Signature

User Partial Key generation.

$D_{ID} \leftarrow \text{KeyGen(params, } s, ID_U, \text{ Binding parameters)}$

KGC checks whether $e(Y, P) = e(X, Z) = e(PK_U, W)$.

If the above holds, KGC computes the user partial key $D_{ID} = s \cdot Y$ and creates a registration-token $R_{ID} = s \cdot Z$. Then, KGC publishes $\langle R_{ID}, ID_U \rangle$ in a public directory and sends D_{ID} to the user over a public channel.

Background

Identity-based Cryptosystem

Identity-based Signature

Unblinding Partial Key \rightarrow User Private Key.

$SK_U \leftarrow \mathbf{KeyGen}(\mathbf{params}, a, D_{ID})$

User checks whether $e(D_{ID}, P) = e(Y, PK_{KGC})$.

If it holds, user unblinds his partial key and generates his private key SK_{II} as $SK_{II} = a^{-1} \cdot D_{ID} = b \cdot s \cdot PK_{II}$.

Contents

Background

Identity-based Cryptosystem

Identity-based Signature

Signature Generation.

$(\sigma, c, m) \leftarrow \mathbf{Sign}(\mathbf{params}, t, m, SK_U)$

To sign a message m, the signer does the following:

- Pick a random $t \in Z_q^*$
- Compute $r = e(P, P)^t$ and $c = h(m, r, R_{ID})$
- Compute $\sigma = c \cdot SK_U + t \cdot P$.

The signature on message m is (σ, c, m) .

Contents

Background

Cryptosystem

Identity-based Signature

Signature Verification.

Accept/Reject \leftarrow Verify(params, $ID_U, R_{ID}, m, c, \sigma$)

- Compute $\hat{r} = e(\sigma, P) \cdot e(PK_U, -R_{ID})^c$
- Accept the signature if $c = h(m, \hat{r}, R_{ID})$.

Daalamaaaa

Background

Identity-based Cryptosystem

Identity-based Signature

Conclusion:

Merit and Limitation of the proposed solution

Contents

Background

Identity-based Cryptosystem

Identity-based Signature

Conclusion

- The proposed technique provides solution to key escrow problem in ID-based construction.
- The proposed technique eiminates the use of secure channel in ID-based construction.
- User Registration identity needs to be managed, which is a bottleneck of the suggested solution.

Manik Lal Das. Key-escrow free multi-signature scheme using bilinear pairings. *Groups-Complexity-Cryptology*, 7(1):47-57, 2015.

Manik Lal Das. A key escrow-free identity-based signature scheme without using secure channel. *Cryptologia*, 35(1): 58-72, 2011.

Conclusion:

Merit and Limitation of the proposed solution

Contents

Background

Identity-based Cryptosystem

Identity-based Signature

Conclusion

- The proposed technique provides solution to key escrow problem in ID-based construction.
- The proposed technique eiminates the use of secure channel in ID-based construction.
- User Registration identity needs to be managed, which is a bottleneck of the suggested solution.

Manik Lal Das. Key-escrow free multi-signature scheme using bilinear pairings. *Groups-Complexity-Cryptology*, 7(1):47-57, 2015.

Manik Lal Das. A key escrow-free identity-based signature scheme without using secure channel. *Cryptologia*, 35(1): 58-72, 2011.

