Ballot privacy in elections: new metrics and constructions.

Olivier Pereira – Université catholique de Louvain

Based on joint works with:

D. Bernhard, V. Cortier, E. Cuvelier,
T. Peters and B. Warinschi

March 2015

Open Voting

Open Voting

Open Voting

- ► Every voter can verify that nobody tampered with her/his vote
- Every voter can compute the tally
- ▶ No privacy, no coercion-resistance, no fairness, . . .

Secret Ballot

- ► Liberal motivation: "My vote is my own business, elections are a tool for aggregating private opinions"
- ▶ Practical motivation: Prevent coercion and bribery

A traditional paper approach

- ▶ With voting booth: privacy, coercion-resistance, fairness, . . .
- ▶ If a voter keeps an eye on the urn and tally all day long, he can be convinced that:
 - his vote is untampered
 - the tally is based on valid votes and correct
- A minute of inattention is enough to break this

Privacy vs Verifiability – Two Extremes

Hand raising vote

Verifiability 100% Privacy 0%

Uncontrolled ballot box

Verifiablility 0% Privacy 100%

Privacy and Verifiability

Defining Vote Privacy

Not an absolute notion:

Usually accepted that there is no privacy when all voters support the same candidate

Elections as Secure Function Evaluation [Yao82]:

- "The voting system should not leak more than the outcome"
- But we would like to know how much the outcome leaks!

Game-style definition [KTV11]:

- Privacy measured as max probability to distinguish whether I voted in one way or another
- ▶ Often too strong: that probability is ≈ 1 when:

#different ballots ≫ #voters

Defining Vote Privacy

What do we want to measure?

- 1. With what probability can \mathcal{A} guess my vote? Sounds like min-entropy!
- 2. In how many ways can I pretend that I voted? Sounds like Hartley entropy!

Notations

Let:

- D be the distribution of honest votes (if known)
- $ightharpoonup T: \sup(\mathcal{D}) \mapsto \{0,1\}^*$ be a target function
 - $\vdash T(v_1,\ldots,v_n) := v_i$
 - $T(v_1,\ldots,v_n) := (v_i \stackrel{?}{=} v_i)$
- $ightharpoonup \rho(v_1,\ldots,v_n)$ be the official outcome of the election
- view_A(\mathcal{D}, π) be the view of A participating to voting protocol π in which honest voters vote according to $\mathcal D$

Measure(s) for privacy

$$\mathsf{M}_{\mathsf{X}}(T,\mathcal{D},\pi) := \inf_{\mathcal{A}} \mathsf{F}_{\mathsf{X}}(T(\mathcal{D})|\mathsf{view}_{\mathcal{A}}(\mathcal{D},\pi), \rho(\mathcal{D}, \mathsf{v}_{\mathcal{A}}))$$

where:

▶ $F_x(A|B)$ is some x-Réniy entropy measure on A given B

Choices for $F_{\star}(A|B)$

$$\mathsf{M}_{\scriptscriptstyle X}(T,\mathcal{D},\pi) := \inf_{\mathcal{A}} \mathsf{F}_{\scriptscriptstyle X}(T(\mathcal{D})|\mathsf{view}_{\mathcal{A}}(\mathcal{D},\pi),\rho(\mathcal{D},\nu_{\mathcal{A}}))$$

Choices for $F_x(A|B)$:

$$\tilde{\mathsf{H}}_{\infty}$$
 Average min-entropy: $-\log\left(\underset{b\in\mathcal{B}}{\mathbb{E}}\left[2^{-\mathsf{H}_{\infty}(A|B=b)}\right]\right)$ [DORS08] Measures the probability that \mathcal{A} guesses the target

 $\mathsf{H}_{\infty}^{\perp}$ Min-min-entropy: $\min_{b \in B} \mathsf{H}_{\infty}(A|B=b)$ Same as before, but for the worst possible b

 H_0^{\perp} Min-Hartley-entropy: min $H_0(A|B=b)$ Measures the number of values that the target can take for the worst b – No probabilities involved!

An example...

Consider:

- ► An approval (yes/no) election with 1 question
- ▶ 3 voters voting uniformly at random
- target is the first voter

	$ ilde{H}_{\infty}$	H_∞^\perp	H_0^\perp
$\rho_1 := \bot$	1	1	1
$ ho_2 := \vec{v} _{yes} > \vec{v} _{no}$.4	.4	1
$\rho_3 := (\vec{v} _{yes}, \vec{v} _{no})$.4	0	0
$ ho_4 := \vec{v}$	0	0	0

$$(.4 \approx -\log \frac{3}{4})$$

Scantegrity Audit Data

- Official outcome: number of votes received by each candidate
- Scantegrity audit trail exposes all ballots (codes removed)
- Scantegrity take-home receipt shows how many bullets you filled

Scantegrity Audit Data

From the 2009 Takoma Park municipal election data:

Ward		1	5		6	
#Ballots	470		85		198	
Question	Α	В	Α	В	Α	В
H_0^\perp from official outcome	6	3.17	6	3.17	6	6
H_0^\perp with receipts	1.58	1.58	0	1	2	1.58

- ▶ 6/3.17 bits is a question with 3/2 candidates to rank (including incorrect rankings)
- ▶ In most cases, rankings of a certain length are uncommon
- ▶ In Ward 5, a voter looses his/her privacy completely on Question A if he/she shows his/her receipt!

Single-Pass Cryptographic Voting

A common approach ([CGS97], [DJ01], Helios, ...):

- 1. Trustees create an election public key pk
- 2. Voters publish an encryption of their vote v_i
- 3. Trustees compute and publish the tally, using the secret key sk
- 4. Everyone can verify that the tally is consistent with the encrypted votes

Cryptographic Voting

Problem with entropic measures of privacy:

$$H(v_i|\mathsf{Enc}_{pk}(v_i),pk)=0$$

Solution: use a computational analog of entropy:

▶
$$F_x^c(A|B) \ge r \Leftrightarrow \exists B' \approx^c B \text{ and } F_x(A|B') \ge r$$

In particular,

$$\mathsf{H}^c(v_i|\mathsf{Enc}_{pk}(v_i),pk)\geq r$$
 if $\mathsf{H}(v_i|\mathsf{Enc}_{pk}(0),pk)\geq r$

Computational Measure(s) for privacy

$$\mathsf{M}^{\mathsf{c}}_{\mathsf{x}}(T,\mathcal{D},\pi) := \inf_{\mathcal{A}} \mathsf{F}^{\mathsf{c}}_{\mathsf{x}}(T(\mathcal{D})|\mathsf{view}_{\mathcal{A}}(\mathcal{D},\pi), \rho(\mathcal{D}, \mathsf{v}_{\mathcal{A}}))$$

where:

► $F_x^c(A|B)$ is a x-Réniy computational entropy metric on A given B

Definition (informal): A voting scheme π with tallying function ρ offers *ballot privacy* if, for all T, \mathcal{D} :

$$\mathsf{M}_{\mathsf{x}}^{\mathsf{c}}(T,\mathcal{D},\pi) = \inf_{\mathcal{A}} \mathsf{F}_{\mathsf{x}}^{\mathsf{c}}(T(\mathcal{D})|\rho(\mathcal{D},\mathsf{v}_{\mathcal{A}}))$$

Privacy and Verifiability

Do we *need* to move to computational entropies?

- ▶ Publish encrypted votes, but what if encryption gets broken?
 - because time passes and computing speed increases
 - because decryption keys are lost/stolen
 - because there is an algorithmic breakthrough

Voting with a Perfectly Private Audit Trail

Can we offer verifiability without impacting privacy?

More precisely:

Can we take a non-verifiable voting scheme and add verifiability without impacting privacy?

Goal:

- Have a new kind of audit data
- Audit data must perfectly hide the votes
- Usability must be preserved:
 - 1. Practical distributed key generation
 - 2. No substantial increase of the cost of ballot preparation
 - 3. Be compatible with efficient proof systems

Commitments Can Enable Perfect Privacy

commitment d

- ► A commitment is *perfectly hiding* if *d* is independent of *m*
- A commitment is *computationally binding* if it is *infeasible* to produce d, (m, a), (m', a') such that d can be opened on both (m, a) and (m', a') $(m \neq m')$

Example:

- ▶ Let g_0, g_1 be random generators of a cyclic group $\mathbb G$
- ▶ Set $d = g_0^a g_1^m$ as a commitment on m with random opening a
- ▶ Finding a different (m, a) pair consistent with d is as hard as computing the discrete log of g_1 in base g_0

A New Primitive : Commitment Consistent Encryption

```
Commitment Consistent Encryption (CCE) scheme \Pi = (Gen, Enc, Dec, DerivCom, Open, Verify)

(Gen, Enc, Dec) is a classic encryption scheme
```

```
c = Enc_{pk}(m)
```

```
DerivCom_{pk}(c) from the ciphertext, derives a commitment d

Open_{sk}(c) outputs an opening value a from c using sk

Verify_{pk}(d, a, m) checks that d is a commitment on m w.r.t. a
```

Single-Pass Cryptographic Voting

Voting with a CCE scheme:

- 1. Trustees create an election public key pk
- 2. Voters submit an encryption of their vote v_i to Trustees
- 3. Trustees publish commitments extracted from encrypted votes
- 4. Trustees publish the tally, as well a proofs of correctness

Voting with a Perfectly Private Audit Trail

If:

- Commitments are perfectly hiding
- Proofs are perfect/statistical zero-knowledge

Then:

- the audit trail is independent of the votes
 - $\Rightarrow H_x(votes \mid audit trail + tally) = H_x(votes \mid tally)$

If cryptographic assumptions are broken:

Someone might be able to "prove" a wrong result

But:

- Proof needs to be produced fast enough to be compelling
- ▶ Only people who believe in crypto assumption will trust the proof

Building CC Encryption Schemes

Group setup:

 $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$ different groups of same prime order

A bilinear map $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$

$$\begin{array}{c|ccc} \mathbb{G}_1 & \mathbb{G}_2 & \mathbb{G}_T \\ \hline g & h & e(g,h) \\ g^a & h & e(g^a,h) = e(g,h)^a \\ g & h^b & e(g,h^b) = e(g,h)^b \end{array}$$

DDH problem expected to be hard in \mathbb{G}_1 and \mathbb{G}_2

The PPATS Scheme

Additively homomorphic scheme for small message $m \in \mathbb{Z}_q$

\mathbb{G}_1	\mathbb{G}_2	$\mid \mathbb{G}_{\mathcal{T}}$
$g,g_1=g^{x_1}$	h, h_1	
$c_1=g^s$	$d = h^r h_1^m$	
$c_2 = g^r g_1^s$		$Dec_{sk}(c)$: $DLog$ of $e(c_1^{x_1}/c_2, h)$
		e(g,d)
$Open_{sk}(c)$:		$=e(g,h_1)^m$
$a=c_2/c_1^{x_1}$		$Verif_{nk}(d, m, a)$:
		$Verif_{pk}(d, m, a) :$ $e(a, h) \stackrel{?}{=}$
		$e(g,d/h_1^m)$

Efficiency Comparisons

Assuming:

- 256 bit multiplication costs 1
- multiplication has quadratic complexity
- exponentiation/point multiplication by square and multiply

Cost of 1 encryption (+0/1 proof)

Scheme	\mathbb{Z}_p^*	$\mathbb{Z}_{N^2}^*$	\mathbb{G}_1	\mathbb{G}_2	Total Cost
Pedersen/Paillier	4	10	0	0	8.650.752
PPATS	0	0	6	6	115.200

+ PPATS has considerably simpler threshold variants, thanks to the public order groups

Conclusions: Privacy and Verifiability

Two apparently conflicting requirements on votes:

Hiding for privacy \leftrightarrow Showing for verifiability

Commitment-consistent encryption can reconcile these goals!

Experiences and metrics are useful: the outcome of an election can, in itself, give more information than expected, as voters vote highly non uniformly!