

CHIFFREMENT (COMPLÈTEMENT) HOMOMORPHE: DE LA THÉORIE À LA PRATIQUE

Tancrède Lepoint

CryptoExperts

Séminaire sur la Confiance Numérique – Jeudi 9 Octobre 2014

Outline

1. Introduction

- 1.1 What is Fully Homomorphic Encryption? Use Cases?
- 1.2 Somewhat Homomorphic Encryption over the Integers

2. Implementations and Cloud Communications

- 2.1 Pointers to Implementations and Libraries
- 2.2 Cloud Communication Issues

Outline

1. Introduction

- 1.1 What is Fully Homomorphic Encryption? Use Cases?
- 1.2 Somewhat Homomorphic Encryption over the Integers
- 2. Implementations and Cloud Communications
 - 2.1 Pointers to Implementations and Libraries
 - 2.2 Cloud Communication Issues

Encryption

Encryption

Encryption

One Motivation: Cloud Computing

Program or application on connected server(s) rather than locally

Modelization

f is the service provided by the Cloud on your data m_i

Confidentiality of Your Data

Confidentiality of your data in the Cloud?

Confidentiality of Your Data

Confidentiality of your data in the Cloud?

ightharpoonup We assume communication with the Cloud is secure $\sqrt{}$ (e.g. HTTPS)

Confidentiality w.r.t. The Cloud

► For confidentiality, we use encryption

Confidentiality w.r.t. The Cloud

- ► For confidentiality, we use encryption
 - ► Now... limited to storage/retrieval

Confidentiality w.r.t. The Cloud

- ► For confidentiality, we use encryption
 - Now... limited to storage/retrieval
 - ► This is not even what Dropbox/Google Drive/Microsoft OneDrive/Amazon S2/iCloud Drive/etc. are doing
 - Allow access control and sharing, interaction with whole app universe, etc.

[RivestAdlemanDertouzos78]

Going beyond the storage/retrieval of encrypted data by permitting encrypted data to be operated on for interesting operations, in a public fashion?

[RivestAdlemanDertouzos78]

Going beyond the storage/retrieval of encrypted data by permitting encrypted data to be operated on for interesting operations, in a public fashion?

► **Additive** Homomorphic Encryption:

$$E = \operatorname{Enc}(a) + \operatorname{Enc}(b) \Rightarrow \operatorname{Dec}(E) = a + b$$

e.g. Paillier's cryptosystem [Paillier99]

$$c = g^m \cdot r^N \mod N^2$$

$$c' = g^{m'} \cdot r'^N \mod N^2 \implies c \cdot c' = g^{m+m'} \cdot (r \cdot r')^N \mod N^2$$

[RivestAdlemanDertouzos78]

Going beyond the storage/retrieval of encrypted data by permitting encrypted data to be operated on for interesting operations, in a public fashion?

► **Additive** Homomorphic Encryption:

$$E = \operatorname{Enc}(a) + \operatorname{Enc}(b) \Rightarrow \operatorname{Dec}(E) = a + b$$

▶ **Multiplicative** Homomorphic Encryption:

$$E = \operatorname{Enc}(a) \times \operatorname{Enc}(b) \Rightarrow \operatorname{Dec}(E) = a \times b$$

e.g. 'textbook ElGamal'

$$c = (g^{y}, m \cdot (g^{x})^{y})$$

$$c' = (g^{y'}, m' \cdot (g^{x})^{y'}) \Rightarrow c \odot c' = (g^{y+y'}, (m \cdot m') \cdot (g^{x})^{y+y'})$$

[RivestAdlemanDertouzos78]

Going beyond the storage/retrieval of encrypted data by permitting encrypted data to be operated on for interesting operations, in a public fashion?

▶ **Additive** Homomorphic Encryption:

$$E = \operatorname{Enc}(a) + \operatorname{Enc}(b) \implies \operatorname{Dec}(E) = a + b$$

► **Multiplicative** Homomorphic Encryption:

$$E = \operatorname{Enc}(a) \times \operatorname{Enc}(b) \Rightarrow \operatorname{Dec}(E) = a \times b$$

FULLY Homomorphic Encryption: Additive and Multiplicative on $\{0,1\}$

Fully Homomorphic Encryption

Enable unlimited computation on encrypted data

(w.l.o.g. m_i 's are bits and f Boolean circuit)

Towards Fully Homomorphic Encryption

- ► [RivestAdlemanDertouzos78]: notion of privacy homomorphism
- ► [GoldwasserMicali84]: XOR of bits
- ► [ElGamal84]: multiplication mod *p*
- ▶ [Paillier98]: addition mod N = pq
- ▶ [BonehGohNissim05]: additions and **one** multiplication mod p

Towards Fully Homomorphic Encryption

- ► [RivestAdlemanDertouzos78]: notion of privacy homomorphism
- ► [GoldwasserMicali84]: XOR of bits
- ► [ElGamal84]: multiplication mod *p*
- ▶ [Paillier98]: addition mod N = pq
- ▶ [BonehGohNissim05]: additions and **one** multiplication mod p
- ► [Gentry09]: additions and multiplications mod 2!

Awesome! Can We Use It?

- ► In **theory**, plentiful of applications
 - Everything can be viewed as a circuit
 - Humongous potential
 - Solve many problems on privacy

Awesome! Can We Use It?

- ► In **theory**, plentiful of applications
 - Everything can be viewed as a circuit
 - Humongous potential
 - Solve many problems on privacy
- ► In **practice**... problem because of sequential homomorphic multiplications!
 - State-of-the-art in 2011: 30 minutes after each bit-multiplication

Awesome! Can We Use It?

- ► In **theory**, plentiful of applications
 - Everything can be viewed as a circuit
 - Humongous potential
 - Solve many problems on privacy
- ► In **practice**... problem because of sequential homomorphic multiplications!
 - State-of-the-art in 2011: 30 minutes after each bit-multiplication
 - ► State-of-the-art in 2014: not much better... for **fully** homomorphic encryption
 - (But I heard about exciting new results to come...)

(Fully?) Homomorphic Encryption

Question [NaehrigLauterVaikuntanathan12]:

Do we really need fully homomorphic encryption?

(Fully?) Homomorphic Encryption

Question [NaehrigLauterVaikuntanathan12]:

Do we really need fully homomorphic encryption?

- Work over bits?
 - e.g. computing $\sum_{i=1}^{10} t_i$ where t_i are 8-bit values:
 - ► 135 '×' and '× depth' = 8 if working over bits [FauSirdeyFontaineAguilar-MelchorGogniat13]
 - ▶ 0 '×' if plaintext space is \geq 2560

(Fully?) Homomorphic Encryption

Question [NaehrigLauterVaikuntanathan12]:

Do we really need fully homomorphic encryption?

- Work over bits?
 - e.g. computing $\sum_{i=1}^{10} t_i$ where t_i are 8-bit values:
 - ► 135 '×' and '× depth' = 8 if working over bits [FauSirdeyFontaineAguilar-MelchorGogniat13]
 - ▶ 0 'x' if plaintext space is \geq 2560
- "Real World": limited number of multiplications
 - ▶ **Statistics** on medical data: mean, variance, linear regression, etc.
 - Geolocalization (Euclidean distance, etc.)

Somewhat Homomorphic Encryption

- Somewhat Homomorphic Encryption (SHE): limited number of homomorphic operations
- ► **Know in advance** the × depth of the circuit to be evaluated

SHE is sufficient for many applications, and this is on what we (& the community) focus on

Somewhat Homomorphic Encryption

- Somewhat Homomorphic Encryption (SHE): limited number of homomorphic operations
- ▶ **Know in advance** the × depth of the circuit to be evaluated

SHE is sufficient for many applications, and this is on what we (& the community) focus on

- ► Interestingly enough: FHE = (SHE that evaluates its decryption circuit) [Gentry09]
 - ▶ If c = Enc(m), run homomorphically Dec:

$$c_{\text{result}} = \text{Enc}(\text{Dec}(c)) = \text{Enc}(\text{Dec}(\text{Enc}(m))) = \text{Enc}(m)$$

Use-Cases?

Information and Communications Technologies call for projects (H2020)

Construction of "Resource efficient, real-time, highly secure fully homomorphic cryptography" is a key challenge

- We need to focus on applications driven by real use-cases having small multiplicative depth
- Statistical Computations
 - Mean
 - Standard deviation
- Genomics (e.g. χ^2 test: statistical tests)
- Machine learning

► Cloud want to compute the **mean** on private values $\{x_1,...,x_n\}$

$$\bar{x} = \left(\sum_{i=1}^{n} x_i\right) / n$$

► SHE encryption scheme Enc (with decryption Dec)

► Cloud want to compute the **mean** on private values $\{x_1, ..., x_n\}$

$$\bar{x} = \left(\sum_{i=1}^{n} x_i\right) / n$$

- ► SHE encryption scheme Enc (with decryption Dec)
- 1. We can assume that *n* is public, so we only need to compute $\sum_{i=1}^{n} x_i$

► Cloud want to compute the **mean** on private values $\{x_1, ..., x_n\}$

$$\bar{x} = \left(\sum_{i=1}^{n} x_i\right) / n$$

- SHE encryption scheme Enc (with decryption Dec)
- 1. We can assume that *n* is public, so we only need to compute $\sum_{i=1}^{n} x_i$
- 2. The cloud has $Enc(x_1), ..., Enc(x_n)$

► Cloud want to compute the **mean** on private values $\{x_1,...,x_n\}$

$$\bar{x} = \left(\sum_{i=1}^{n} x_i\right) / n$$

- SHE encryption scheme Enc (with decryption Dec)
- 1. We can assume that *n* is public, so we only need to compute $\sum_{i=1}^{n} x_i$
- 2. The cloud has $Enc(x_1), ..., Enc(x_n)$
- 3. The cloud can **homomorphically** compute and send back to me

$$X = \operatorname{Enc}(x_1) + \dots + \operatorname{Enc}(x_n)$$

► Cloud want to compute the **mean** on private values $\{x_1,...,x_n\}$

$$\bar{x} = \left(\sum_{i=1}^{n} x_i\right) / n$$

- ► SHE encryption scheme Enc (with decryption Dec)
- 1. We can assume that n is public, so we only need to compute $\sum_{i=1}^n x_i$
- 2. The cloud has $Enc(x_1), ..., Enc(x_n)$
- 3. The cloud can **homomorphically** compute and send back to me

$$X = \operatorname{Enc}(x_1) + \cdots + \operatorname{Enc}(x_n)$$

4. I can decrypt the result *V*:

$$Dec(X) = x_1 + \dots + x_n = \sum_{i=1}^{n} x_i$$

Variance

► Cloud want to compute the **variance** on private values $\{x_1, ..., x_n\}$

$$v = \left(\sum_{i=1}^{n} (x_i - \bar{x})^2\right) / n$$

► SHE encryption scheme Enc (with decryption Dec)

Variance

► Cloud want to compute the **variance** on private values $\{x_1, ..., x_n\}$

$$v = \left(\sum_{i=1}^{n} (x_i - \bar{x})^2\right) / n$$

- SHE encryption scheme Enc (with decryption Dec)
- 1. We can assume that n is public, so we only need to compute

$$n^{3} \cdot v = n^{2} \cdot \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \sum_{i=1}^{n} \left(n \cdot x_{i} - \sum_{j=1}^{n} x_{j} \right)^{2}$$

Variance

► Cloud want to compute the **variance** on private values $\{x_1, ..., x_n\}$

$$v = \left(\sum_{i=1}^{n} (x_i - \bar{x})^2\right) / n$$

- SHE encryption scheme Enc (with decryption Dec)
- 1. We can assume that n is public, so we only need to compute

$$n^{3} \cdot v = n^{2} \cdot \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \sum_{i=1}^{n} (n \cdot x_{i} - \sum_{j=1}^{n} x_{j})^{2}$$

2. The cloud has $Enc(x_1), ..., Enc(x_n)$

Variance

► Cloud want to compute the **variance** on private values $\{x_1, ..., x_n\}$

$$v = \left(\sum_{i=1}^{n} (x_i - \bar{x})^2\right) / n$$

- SHE encryption scheme Enc (with decryption Dec)
- 1. We can assume that n is public, so we only need to compute

$$n^{3} \cdot v = n^{2} \cdot \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \sum_{i=1}^{n} \left(n \cdot x_{i} - \sum_{i=1}^{n} x_{i} \right)^{2}$$

- 2. The cloud has $Enc(x_1), ..., Enc(x_n)$
- 3. The cloud can **homomorphically** compute and send back to me

$$V = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(\operatorname{Enc}(x_i) - \operatorname{Enc}(v_j) \right) \right) \times \left(\sum_{j=1}^{n} \left(\operatorname{Enc}(x_i) - \operatorname{Enc}(v_j) \right) \right)$$

Variance

Cloud want to compute the **variance** on private values $\{x_1, \dots, x_n\}$

$$v = \left(\sum_{i=1}^{n} (x_i - \bar{x})^2\right) / n$$

- SHE encryption scheme Enc (with decryption Dec)
- 1. We can assume that n is public, so we only need to compute

$$n^{3} \cdot v = n^{2} \cdot \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \sum_{i=1}^{n} (n \cdot x_{i} - \sum_{i=1}^{n} x_{i})^{2}$$

- 2. The cloud has $Enc(x_1), \ldots, Enc(x_n)$
- 3. The cloud can **homomorphically** compute and send back to me

$$V = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(\operatorname{Enc}(x_i) - \operatorname{Enc}(v_j) \right) \right) \times \left(\sum_{j=1}^{n} \left(\operatorname{Enc}(x_i) - \operatorname{Enc}(v_j) \right) \right)$$

4. I can decrypt the result V and recover $Dec(V) = n^3 \cdot v$

Genomics

Application for genomic data
 Private Computation on Encrypted Genomic Data
 Lauter, López-Alt, Naehrig, 2014

Global Alliance

A global alliance of government agencies, research institutes, and hospitals wants to pool all their patients' genomic data to make available for research. http://www.broadinstitute.org/files/news/pdfs/GAWhitePaperJune3.pdf

► In the following: **Pearson Goodness-of-Fit to test for deviation from Hardy-Weinberg equilibrium**

Hardy-Weinberg Equilibrium (HWE)

- ▶ Population of $N = N_{AA} + N_{Aa} + N_{aa}$ people with genotypes AA, Aa or aa
- Probabilities

$$p_{AA} = \frac{N_{AA}}{N}$$
 ; $p_{Aa} = \frac{N_{Aa}}{N}$; $p_{aa} = \frac{N_{aa}}{N}$; $p_{A} = \frac{2N_{AA} + N_{Aa}}{2N}$; $p_{a} = \frac{2N_{aa} + N_{Aa}}{2N}$

Hardy-Weinberg Equilibrium (HWE)

- ▶ Population of $N = N_{AA} + N_{Aa} + N_{aa}$ people with genotypes AA, Aa or aa
- Probabilities

$$p_{AA} = \frac{N_{AA}}{N}$$
 ; $p_{Aa} = \frac{N_{Aa}}{N}$; $p_{aa} = \frac{N_{aa}}{N}$; $p_{A} = \frac{2N_{AA} + N_{Aa}}{2N}$; $p_{a} = \frac{2N_{aa} + N_{Aa}}{2N}$

A gene is said to be in HWE if its allele frequencies are independent

► HWE:

$$p_{AA} = p_A^2$$
 ; $p_{Aa} = p_A p_a$; $p_{aa} = p_a^2$

Pearson Goodness-Of-Fit Test: χ^2 test

▶ If the alleles are independent (i.e. HWE), then

$$\mathbb{E}_{AA} = N \cdot p_A^2$$
 ; $\mathbb{E}_{Aa} = 2N \cdot p_A p_a$; $\mathbb{E}_{aa} = N \cdot p_a^2$

Pearson Goodness-Of-Fit Test: χ^2 test

▶ If the alleles are independent (i.e. HWE), then

$$\mathbb{E}_{AA} = N \cdot p_A^2 \qquad ; \qquad \mathbb{E}_{Aa} = 2N \cdot p_A p_a \qquad ; \qquad \mathbb{E}_{aa} = N \cdot p_a^2$$

Compare the X^2 test-statistic below to the χ^2 -statistic with 1 degree of freedom

$$X^{2} = \sum_{i \in \{AA, Aa, aa\}} \frac{(N_{i} - \mathbb{E}_{i})^{2}}{\mathbb{E}_{i}}$$

- Can be rewritten as previously so that the multiplicative depth is 2
 - ► Can be done homomorphically in an efficient manner!

Pearson Goodness-Of-Fit Test: χ^2 test

▶ If the alleles are independent (i.e. HWE), then

$$\mathbb{E}_{AA} = N \cdot p_A^2 \qquad ; \qquad \mathbb{E}_{Aa} = 2N \cdot p_A p_a \qquad ; \qquad \mathbb{E}_{aa} = M \cdot p_a^2$$

$$= \text{Compare the } X^2 \text{ test-station:} \qquad \text{Rough timing:} \qquad \text{gree of } 1'000 \text{ encrypted genotypes} \qquad \text{gree of } 1'000 \text{ encrypted genotypes}$$

- Can be rewritten as previously so that the multiplicative depth is 2
 - ► Can be done homomorphically in an efficient manner!

Lots of consequences on the privacy, and how this interacts with the European laws.

Questions before the first (conceptually simple) construction?

Simple SHE: DGHV Scheme [vDGHV10]

- Public error-free element: $x_0 = q_0 \cdot p$
- ► Secret key sk = p

Simple SHE: DGHV Scheme [vDGHV10]

- Public error-free element: $x_0 = q_0 \cdot p$
- ► Secret key sk = p

▶ Ciphertext for $m \in \{0, 1\}$:

$$c = \mathbf{q} \cdot \mathbf{p} + 2 \cdot \mathbf{r} + m$$

where q large random, r small random

Simple SHE: DGHV Scheme [vDGHV10]

- ▶ Public error-free element: $x_0 = q_0 \cdot p$
- ► Secret key sk = p

▶ Ciphertext for $m \in \{0, 1\}$:

$$c = \mathbf{q} \cdot \mathbf{p} + 2 \cdot \mathbf{r} + m$$

where q large random, r small random

▶ Decryption of *c*:

$$m = (c \bmod p) \bmod 2$$

Homomorphic Properties

- ► How to Add and Multiply Encrypted Bits:
 - ► Add/Mult two near-multiples of *p* gives a near-multiple of *p*

$$c_1 = q_1 \cdot p + 2 \cdot r_1 + m_1, \qquad c_2 = q_2 \cdot p + 2 \cdot r_2 + m_2$$

$$c_1 + c_2 = \mathbf{p} \cdot (\mathbf{q}_1 + \mathbf{q}_2) + \underbrace{2 \cdot (\mathbf{r}_1 + \mathbf{r}_2) + m_1 + m_2}_{\text{mod } 2 \to m_1 \text{XOR} m_2}$$

$$c_1 \cdot c_2 = p \cdot (c_2 q_1 + c_1 q_2 - q_1 q_2) + \underbrace{2 \cdot (2r_1 r_2 + r_2 m_1 + r_1 m_2) + m_1 \cdot m_2}_{\text{mod } 2 \to m_1 \text{AND} m_2}$$

Homomorphic Properties

- ► How to Add and Multiply Encrypted Bits:
 - ► Add/Mult two near-multiples of *p* gives a near-multiple of *p*

$$c_1 = q_1 \cdot p + 2 \cdot r_1 + m_1, \qquad c_2 = q_2 \cdot p + 2 \cdot r_2 + m_2$$

$$c_1 + c_2 = \mathbf{p} \cdot (\mathbf{q}_1 + \mathbf{q}_2) + \underbrace{2 \cdot (\mathbf{r}_1 + \mathbf{r}_2) + m_1 + m_2}_{\text{mod } 2 \to m_1 \text{XOR} m_2}$$

$$c_1 \cdot c_2 = p \cdot (c_2 q_1 + c_1 q_2 - q_1 q_2) + \underbrace{2 \cdot (2r_1 r_2 + r_2 m_1 + r_1 m_2) + m_1 \cdot m_2}_{\text{mod } 2 \to m_1 \text{AND} m_2}$$

Correctness for multiplicative depth of L: $\log_2 p = \eta \approx 2^L \cdot (\rho + 1)$

- $p = 541, q_0 = 809 \Rightarrow x_0 = 437669$
- ▶ noise size: $\rho = 4$

- $p = 541, q_0 = 809 \Rightarrow x_0 = 437669$
- ▶ noise size: $\rho = 4$

Encryption:

- $c_1 = 737 \cdot 541 + 2 \cdot 6 + 1 = 398730$
- $c_2 = 368 \cdot 541 + 2 \cdot 9 + 0 = 199106$

- $p = 541, q_0 = 809 \Rightarrow x_0 = 437669$
- ▶ noise size: $\rho = 4$

Encryption:

- $c_1 = 737 \cdot 541 + 2 \cdot 6 + 1 = 398730$
- $c_2 = 368 \cdot 541 + 2 \cdot 9 + 0 = 199106$

Addition and **Multiplication**:

- $c_3 = c_1 + c_2 \mod x_0 = (398730 + 199106) \mod 437669 = 160167$
- $c_4 = c_1 \cdot c_2 \mod x_0 = (398730 \cdot 199106) \mod 437669 = 317801$

- $p = 541, q_0 = 809 \Rightarrow x_0 = 437669$
- ▶ noise size: $\rho = 4$

Encryption:

- $c_1 = 737 \cdot 541 + 2 \cdot 6 + 1 = 398730$
- $c_2 = 368 \cdot 541 + 2 \cdot 9 + 0 = 199106$

Addition and Multiplication:

- $c_3 = c_1 + c_2 \mod x_0 = (398730 + 199106) \mod 437669 = 160167$
- $c_4 = c_1 \cdot c_2 \mod x_0 = (398730 \cdot 199106) \mod 437669 = 317801$

Decryption:

- $c_3 \mod p = 160167 \mod 541 = 31 = 2 \cdot 10 + 1 = 2 \cdot 10 + (1 \text{ XOR } 0)$
- $c_4 \mod p = 317801 \mod 541 = 234 = 2 \cdot 117 + 0 = 2 \cdot 10 + (1 \text{ AND } 0)$

- Implementation of bit-encryption scheme: https://github.com/coron/fhe
- ▶ Benchmark on a nontrivial, not astronomical circuit: AES

- Implementation of bit-encryption scheme: https://github.com/coron/fhe
- ▶ Benchmark on a nontrivial, not astronomical circuit: AES
- ▶ Batch DGHV (with bootstrapping) [CCKLLTY13]

λ	γ	ℓ	Mult	Bootstrapping AES		Relative time
72	2.9MB	544	0.68 s	225 s	113 h	768 s
80	_	_	_	_	_	_

- Implementation of bit-encryption scheme: https://github.com/coron/fhe
- ▶ Benchmark on a nontrivial, not astronomical circuit: AES
- ▶ Batch DGHV (with bootstrapping) [CCKLLTY13]

λ	γ	ℓ	Mult	Bootstrapping	AES	Relative time
72	2.9MB	544	0.68 s	225 s	113 h	768 s
80	-	_	_	_	-	_

Scale-Invariant DGHV (without bootstrapping) [CLT14]

λ	γ	ℓ	Mult	Convert	AES	Relative time	
72	2MB	569	0.1 s	33 s	3.6 h	23 s	
80	4.5MB	1875	0.3 s	277 s	102 h	195 s	

- Implementation of bit-encryption scheme: https://github.com/coron/fhe
- ▶ Benchmark on a nontrivial, not astronomical circuit: AES
- ▶ Batch DGHV (with bootstrapping) [CCKLLTY13]

λ	γ	ℓ	Mult	Bootstrapping	AES	Relative time
72	2.9MB	544	0.68 s	225 s	113 h	768 s
80	-	_	_	_	-	_

► Scale-Invariant DGHV (without bootstrapping) [CLT14]

λ	γ	ℓ	Mult	Convert AES		Relative time
72	2MB	569	0.1 s	33 s	3.6 h	23 s
80	4.5MB	1875	0.3 s	277 s	102 h	195 s

► Lattice-Based Scheme [GHS12]

λ	Ciphertext size	ℓ	AES	Relative time
80	0.3 MB	720	65 h	300 s

Outline

1. Introduction

- 1.1 What is Fully Homomorphic Encryption? Use Cases?
- 1.2 Somewhat Homomorphic Encryption over the Integers

2. Implementations and Cloud Communications

- 2.1 Pointers to Implementations and Libraries
- 2.2 Cloud Communication Issues

Some Libraries for C/C++ implementations

- ► **GMP**: GNU Multiple Precision Arithmetic Library https://gmplib.org/
- ► NTL: A Library for doing Number Theory http://www.shoup.net/ntl/
 - Not thread safe...
 - Fork of NTL: newNTL
 (http://www.prism.uvsq.fr/~gama/newntl.html)
- ► **FLINT**: Fast Library for Number Theory http://www.flintlib.org/
 - LOTS of dependencies...
- OpenMP: library for easy parallelization http://openmp.org/
 - Does not work easily with clang yet...

Do It Yourself?

Table: YASHE with parameters $R = \mathbf{Z}[x]/(x^{4096} + 1)$, $q = 2^{127} - 1$, $w = 2^{32}$, $t = 2^{10}$ on an Intel Core i7-2600 at 3.4 GHz with hyper-threading turned off and over-clocking ('turbo boost') disabled

	KeyGen	Encrypt	Add	Mult	KeySwitch	Decrypt
[LN14] (FLINT)	3.4s	16ms	0.7ms	18ms	31ms	15ms
[BLLN13] (Home-made)	?	23ms	0.020ms	27ms		4.3ms

- ▶ **Might be interesting**: not too many functions to implement
 - ▶ If $q \equiv 1 \pmod{2n}$ prime and $n = 2^k$: very efficient FFT
 - ▶ More work for general rings $R = \mathbf{Z}[X]/(\phi_d(X))$ with cyclotomic polynomial ϕ_d

Public Implementations of FHE?

Unfortunately, **few implementations** are available to play with...

- ▶ SV [SV10]: http://www.hcrypt.com
 - Quite inefficient...
- ▶ **DGHV**[CNT12]: https://github.com/coron/fhe
 - In SAGE
- ▶ BGV [BGV12]: https://github.com/shaih/HElib
 - Uses NTL
- ► YASHE and FV [LN14]:

https://github.com/tlepoint/homomorphic-simon

Uses FLINT

► Typical high-level FHE use-case

- Typical high-level FHE use-case
- ► ... wait a sec! The ciphertext expansion is HUGE (prohibitive)!
 - ▶ If m_i is a 4MB image, using previous schemes, the user would have to send around 200/300GB of encrypted data

- ► Typical high-level FHE use-case
- ► ... wait a sec! The ciphertext expansion is HUGE (prohibitive)!
- ▶ What if we use hybrid encryption? [NaehrigLauterVaikuntanathan12]
 - e.g. AES does not have ciphertext expansion

- ► Typical high-level FHE use-case
- ▶ ... wait a sec! The ciphertext expansion is HUGE (prohibitive)!
- ▶ What if we use hybrid encryption? [NaehrigLauterVaikuntanathan12]
 - e.g. AES does not have ciphertext expansion
 - ► It works :)
 - Network communication from user to cloud essentially optimalyptoexperts

Latency of Homomophic AES

▶ **Latency** of homomorphic eval.: time to get the result

Latency of Homomophic AES

- ▶ **Latency** of homomorphic eval.: time to get the result
- ► Latency of homomorphic AES: dozens of hours
 - ▶ I'm not even considering the function f...

Replacing AES?

- ► Three implementations published [GentryHaleviSmart12, CheonCoronKimLeeLTibouchiYun13, CoronLTibouchi14]
 - Perform ℓ AES in parallel (several plaintexts in one ciphertext)
 - ► Running times: ≈ 100 hours
 - ► Time per AES block: ≤ 5 minutes

Replacing AES?

- Three implementations published [GentryHaleviSmart12, CheonCoronKimLeeLTibouchiYun13, CoronLTibouchi14]
 - Perform ℓ AES in parallel (several plaintexts in one ciphertext)
 - ► Running times: ≈ 100 hours
 - ► Time per AES block: ≤ 5 minutes
- ► AES is not too complicated, but is **not a trivial circuit**!
 - ► Multiplicative depth of the binary circuit: 40 (4 per S-box)
 - Non-linear part: $b \mapsto b^{254}$ in $GF(2^8)$

Replacing AES?

- ► Three implementations published [GentryHaleviSmart12, CheonCoronKimLeeLTibouchiYun13, CoronLTibouchi14]
 - ightharpoonup Perform ℓ AES in parallel (several plaintexts in one ciphertext)
 - ► Running times: ≈ 100 hours
 - ► Time per AES block: ≤ 5 minutes
- ► AES is not too complicated, but is **not a trivial circuit**!
 - ► Multiplicative depth of the binary circuit: 40 (4 per S-box)
 - ▶ Non-linear part: $b \mapsto b^{254}$ in $GF(2^8)$

We know the constraints of FHE/SWHE: can we choose something better than AES? (with small multiplicative depth)

Replacing AES?

- Three implementations published [GentryHaleviSmart12, CheonCoronKimLeeLTibouchiYun13, CoronLTibouchi14]
 - ightharpoonup Perform ℓ AES in parallel (several plaintexts in one ciphertext)
 - ► Running times: ≈ 100 hours
 - ► Time per AES block: ≤ 5 minutes
- ► AES is not too complicated, but is **not a trivial circuit**!
 - ► Multiplicative depth of the binary circuit: 40 (4 per S-box)
 - ▶ Non-linear part: $b \mapsto b^{254}$ in $GF(2^8)$

We know the constraints of FHE/SWHE: can we choose something better than AES? (with small multiplicative depth)

► Resemble some hardware/masking constraints (but is different): reduce the number of multiplications

CRYPTO CXPERTS

Lightweight Block Ciphers?

Maybe we could consider lightweight block ciphers?

► Independently done for Simon [LNaehrig14] and Prince [DorözShahverdiEisenbarthSunar14]

Lightweight Block Ciphers?

Maybe we could consider lightweight block ciphers?

► Independently done for Simon [LNaehrig14] and Prince [DorözShahverdiEisenbarthSunar14]

Benchmarks

► Hard to compare (not same schemes/same computers/same programming languages)

Rough idea:

Scheme	Block Size	Number of cores	Latency
AES	128	4	30-100h
Simon	64	4	3 min
Simon	64	1	12 min
Simon	128	4	1h
Prince	128	1	1h

- Some parallelization is possible
 - ► AES easily up to 16 cores
 - ► Simon easily up to block size/2 cores
 - Prince up to 32 cores

Benchmarks

► Hard to compare (not same schemes/same computers/same programming languages)

Rough idea:

Scheme	Block Size	Number of cores	Latency
AES	128	4	30-100h
Simon	© PoC Implementation available at https://github.com/tlepoint/homomorphic-simon		
Simon			
Simon			
Prince	128	1	1h

- Some parallelization is possible
 - ► AES easily up to 16 cores
 - ► Simon easily up to block size/2 cores
 - Prince up to 32 cores

- ► Current best choice: Prince (multiplicative depth of 24)
- ► The community is working on the subject

- ► Current best choice: Prince (multiplicative depth of 24)
- ▶ The community is working on the subject

Lots of open questions

▶ **Do we really need a block cipher?** (wrt to PK scheme, RNG?)

- ► Current best choice: Prince (multiplicative depth of 24)
- ▶ The community is working on the subject

- ▶ **Do we really need a block cipher?** (wrt to PK scheme, RNG?)
- What is the security/attack models? (who attacks? What do we want to avoid?)

- ► Current best choice: Prince (multiplicative depth of 24)
- ▶ The community is working on the subject

- ▶ **Do we really need a block cipher?** (wrt to PK scheme, RNG?)
- ▶ What is the security/attack models? (who attacks? What do we want to avoid?)
- ▶ What are the condiditions we want on the block cipher? (e.g. resistance to related key does not seem required?)

- ► Current best choice: Prince (multiplicative depth of 24)
- ▶ The community is working on the subject

- ▶ **Do we really need a block cipher?** (wrt to PK scheme, RNG?)
- ▶ What is the security/attack models? (who attacks? What do we want to avoid?)
- ▶ What are the condiditions we want on the block cipher? (e.g. resistance to related key does not seem required?)
- ► How to exploit FHE constraints? (It is not only the multiplicative depth that is interesting to reduce)

- ► Current best choice: Prince (multiplicative depth of 24)
- ▶ The community is working on the subject

- ▶ **Do we really need a block cipher?** (wrt to PK scheme, RNG?)
- ▶ What is the security/attack models? (who attacks? What do we want to avoid?)
- ▶ What are the condiditions we want on the block cipher? (e.g. resistance to related key does not seem required?)
- ► How to exploit FHE constraints? (It is not only the multiplicative depth that is interesting to reduce)
- Reciprocally, can we design FHE schemes specially adapted to certain schemes/algorithms?

https://www.cryptoexperts.com/tlepoint

(Sparse) Bibliography

, ai	C) DIDIIC	514P119		
	[Gen09]	Fully Homomorphic Encryption using Ideal Lattices		
	[DGHV10]	Fully Homomorphic Encryption over the Integers		
	[BV11]	Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages		
	[CMNT11]	Fully Homomorphic Encryption over the Integers with Shorter Public Keys		
	[CNT12]	Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over		
		the Integers		
	[BGV12]	(Leveled) Fully Homomorphic Encryption without Bootstrapping		
	[FV12]	Somewhat Practical Fully Homomorphic Encryption		
	[GHS12]	Homomorphic Evaluation of the AES Circuit		
	[LTV12]	On-the-fly Multiparty Computation on the Cloud via multikey Fully Homomorphic		
		Encryption		
	[NLV12]	Can Homomorphic Encryption be Practical?		
	[BLLN13]	Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme		
	[LP13]	On the Minimal Number of Bootstrappings in Homomorphic Circuits		
	[CCKLLTY13]	Batch Fully Homomorphic Encryption over the Integers		
	[GSW13]	Homomorphic Encryption from Learning With Errors: Conceptually-simpler,		
		Asymptotically-faster, Attribute-based		
	[CLT14]	Scale-Invariant Fully Homomorphic Encryption over the Integers		
	[LN14]	A Comparison of the Homomorphic Encryption Schemes FV and YASHE		
	[DSES14]	Toward Practical Homomorphic Evaluation of Block Ciphers using Prince		
	[BV14]	Lattice-Based FHE as Secure as PKE		